Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. 1976

T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi

The prostaglandin synthetase system of bovine vesicular gland microsomes was solubilized and separated into Fractions I and II. The former fraction catalyzed the conversion of 8,11,14-eicosatrienoic acid to prostaglandin H1 (9 alpha, 11alpha-epidioxy-15(S)-hydroxy-13-trans-prostenoic acid). This compound was isomerized to prostaglandin E1 (11alpha, 15(S)-dihydroxy-9-keto-13-trans-prostenoic acid) by the action of Fraction II (Miyamoto, T., Yamamoto, S., and Hayaishi, O. (1974) Proc. Natl. Acad. Sci. U.S.A. 71, 3645-3648). Fraction I was further purified by isoelectric focusing and about a 700-fold purification was achieved starting from the microsomes. When the enzyme was incubated with 8,11,14-eicosatrienoic acid in the presence of hematin, an unstable compound which was distinguishable from prostaglandin H1 accumulated. The chemical properties of this compound were identical with those of prostaglandin G1 (9 alpha, 11 alpha-epidioxy-15(S)-hydroperoxy-13-trans-prostenoic acid). The enzyme also catalyzed the conversion of prostaglandin G1 to H1 when heme and tryptophan were supplied. Thus, the purified enzyme, which was provisionally referred to as prostaglandin endoperoxide synthetase, exhibited two enzyme activities: the synthesis of prostaglandin G1 and its conversion to prostaglandin H1. Either free or protein-bound heme was required for both reactions, and only protoheme was active. Tryptophan stimulated the conversion of prostaglandin G1 to H1, and this stimulatory effect was also observed with various other aromatic compounds. Indomethacin and aspirin inhibited prostaglandin G1 synthesis, but not the other steps of prostaglandin biosynthesis.

UI MeSH Term Description Entries
D007213 Indomethacin A non-steroidal anti-inflammatory agent (NSAID) that inhibits CYCLOOXYGENASE, which is necessary for the formation of PROSTAGLANDINS and other AUTACOIDS. It also inhibits the motility of POLYMORPHONUCLEAR LEUKOCYTES. Amuno,Indocid,Indocin,Indomet 140,Indometacin,Indomethacin Hydrochloride,Metindol,Osmosin
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008297 Male Males
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D011451 Prostaglandin-Endoperoxide Synthases Enzyme complexes that catalyze the formation of PROSTAGLANDINS from the appropriate unsaturated FATTY ACIDS, molecular OXYGEN, and a reduced acceptor. Fatty Acid Cyclo-Oxygenase,PGH Synthase,Prostaglandin H Synthase,Prostaglandin Synthase,Prostaglandin-Endoperoxide Synthase,Arachidonic Acid Cyclooxygenase,Cyclo-Oxygenase,Cyclooxygenase,Cyclooxygenases,Hydroperoxide Cyclase,PGH2 Synthetase,Prostaglandin Cyclo-Oxygenase,Prostaglandin Cyclooxygenase,Prostaglandin Endoperoxide Synthetase,Prostaglandin G-H Synthase,Prostaglandin H2 Synthetase,Prostaglandin Synthetase,Cyclase, Hydroperoxide,Cyclo Oxygenase,Cyclo-Oxygenase, Fatty Acid,Cyclo-Oxygenase, Prostaglandin,Cyclooxygenase, Arachidonic Acid,Cyclooxygenase, Prostaglandin,Endoperoxide Synthetase, Prostaglandin,Fatty Acid Cyclo Oxygenase,G-H Synthase, Prostaglandin,Prostaglandin Cyclo Oxygenase,Prostaglandin Endoperoxide Synthases,Prostaglandin G H Synthase,Synthase, PGH,Synthase, Prostaglandin,Synthase, Prostaglandin G-H,Synthase, Prostaglandin H,Synthase, Prostaglandin-Endoperoxide,Synthases, Prostaglandin-Endoperoxide,Synthetase, PGH2,Synthetase, Prostaglandin,Synthetase, Prostaglandin Endoperoxide,Synthetase, Prostaglandin H2
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006899 Mixed Function Oxygenases Widely distributed enzymes that carry out oxidation-reduction reactions in which one atom of the oxygen molecule is incorporated into the organic substrate; the other oxygen atom is reduced and combined with hydrogen ions to form water. They are also known as monooxygenases or hydroxylases. These reactions require two substrates as reductants for each of the two oxygen atoms. There are different classes of monooxygenases depending on the type of hydrogen-providing cosubstrate (COENZYMES) required in the mixed-function oxidation. Hydroxylase,Hydroxylases,Mixed Function Oxidase,Mixed Function Oxygenase,Monooxygenase,Monooxygenases,Mixed Function Oxidases,Function Oxidase, Mixed,Function Oxygenase, Mixed,Oxidase, Mixed Function,Oxidases, Mixed Function,Oxygenase, Mixed Function,Oxygenases, Mixed Function
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012669 Seminal Vesicles A saclike, glandular diverticulum on each ductus deferens in male vertebrates. It is united with the excretory duct and serves for temporary storage of semen. (From McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Seminal Vesicle,Vesicle, Seminal,Vesicles, Seminal

Related Publications

T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi
February 1979, The Journal of biological chemistry,
T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi
July 1978, The Journal of biological chemistry,
T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi
May 1977, Biochimica et biophysica acta,
T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi
February 1980, The Journal of biological chemistry,
T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi
October 1981, The Journal of biological chemistry,
T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi
December 1982, The Journal of biological chemistry,
T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi
April 1981, Prostaglandins,
T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi
June 1978, Biochimica et biophysica acta,
T Miyamoto, and N Ogino, and S Yamamoto, and O Hayaishi
May 1984, Prostaglandins, leukotrienes, and medicine,
Copied contents to your clipboard!