The putative morphogen, DIF-1, of Dictyostelium discoideum activates Akt/PKB in human leukemia K562 cells. 1999

Y Kubohara, and K Hosaka
Department of Molecular Physiology, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, 371-8512, Japan. kubohara@akagi.sb.gunma-u.ac.jp

The differentiation-inducing factor-1 (DIF-1) is a putative morphogen that induces stalk-cell formation in the lower eukaryote Dictyostelium discoideum. This molecule has been shown to inhibit cell growth and induce erythroid differentiation in human leukemia K562 cells. In the present study, to clarify the mechanism of the actions of DIF-1, we examined the effect of DIF-1 on Akt/protein kinase B (PKB) in K562 cells. Akt/PKB is a serine/threonine kinase that plays a pivotal role in the regulation of cell survival and differentiation in a variety of cells. A nonphosphorylated (inactive) form of Akt/PKB was ordinarily expressed in K562 cells. However, Akt/PKB was phosphorylated and potently activated within several hours of incubation with 5-30 microM DIF-1, and this activation was inhibited by wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI3-kinase). Calcium-increasing agents thapsigargin and A23187 also activated Akt/PKB slightly, which was inhibited by wortmannin. By contrast, calcium-reducing agents TMB-8 and EGTA together with A23187 inhibited the DIF-1-induced activation of Akt/PKB. PMA (PKC activator) also activated Akt/PKB but this activation was not inhibited by wortmannin. DIF-1 exhibited no marked effect on the activation of PKCalpha, beta, and gamma, which were activated by PMA. These results indicate that DIF-1 activates Akt/PKB possibly via cytosolic calcium and subsequent activation of PI3-kinase and also that PMA activates Akt/PKB in a PI3-kinase-independent manner.

UI MeSH Term Description Entries
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D004023 Dictyostelium A genus of protozoa, formerly also considered a fungus. Its natural habitat is decaying forest leaves, where it feeds on bacteria. D. discoideum is the best-known species and is widely used in biomedical research. Dictyostelium discoideum,Dictyostelium discoideums,Dictyosteliums,discoideum, Dictyostelium
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D004912 Erythrocytes Red blood cells. Mature erythrocytes are non-nucleated, biconcave disks containing HEMOGLOBIN whose function is to transport OXYGEN. Blood Cells, Red,Blood Corpuscles, Red,Red Blood Cells,Red Blood Corpuscles,Blood Cell, Red,Blood Corpuscle, Red,Erythrocyte,Red Blood Cell,Red Blood Corpuscle
D005707 Gallic Acid A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. 3,4,5-Trihydroxybenzoic Acid,Acid, Gallic
D006588 Hexanones 6-carbon straight-chain or branched ketones. Butyl Methyl Ketones,Ethyl Propyl Ketones,Ketones, Butyl Methyl,Ketones, Ethyl Propyl,Methyl Ketones, Butyl,Propyl Ketones, Ethyl

Related Publications

Y Kubohara, and K Hosaka
March 1995, Biochemical and biophysical research communications,
Y Kubohara, and K Hosaka
December 1995, Development, growth & differentiation,
Y Kubohara, and K Hosaka
June 1983, Cell,
Y Kubohara, and K Hosaka
May 1987, Development (Cambridge, England),
Y Kubohara, and K Hosaka
October 1997, Seikagaku. The Journal of Japanese Biochemical Society,
Copied contents to your clipboard!