Induction of metaphase arrest in cleaving Xenopus embryos by the protein kinase p90Rsk. 1999

S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
Howard Hughes Medical Institute and Department of Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA.

Before fertilization, vertebrate eggs are arrested in metaphase of meiosis II by cytostatic factor (CSF), an activity that requires activation of the mitogen-activated protein kinase (MAPK) pathway. To investigate whether CSF arrest is mediated by the protein kinase p90Rsk, which is phosphorylated and activated by MAPK, a constitutively activated (CA) form of Rsk was expressed in Xenopus embryos. Expression of CA Rsk resulted in cleavage arrest, and cytological analysis showed that arrested blastomeres were in M phase with prominent spindles characteristic of meiotic metaphase. Thus, Rsk appears to be the mediator of MAPK-dependent CSF arrest in vertebrate unfertilized eggs.

UI MeSH Term Description Entries
D008540 Meiosis A type of CELL NUCLEUS division, occurring during maturation of the GERM CELLS. Two successive cell nucleus divisions following a single chromosome duplication (S PHASE) result in daughter cells with half the number of CHROMOSOMES as the parent cells. M Phase, Meiotic,Meiotic M Phase,M Phases, Meiotic,Meioses,Meiotic M Phases,Phase, Meiotic M,Phases, Meiotic M
D008677 Metaphase The phase of cell nucleus division following PROMETAPHASE, in which the CHROMOSOMES line up across the equatorial plane of the SPINDLE APPARATUS prior to separation.
D008941 Spindle Apparatus A microtubule structure that forms during CELL DIVISION. It consists of two SPINDLE POLES, and sets of MICROTUBULES that may include the astral microtubules, the polar microtubules, and the kinetochore microtubules. Mitotic Apparatus,Mitotic Spindle Apparatus,Spindle Apparatus, Mitotic,Meiotic Spindle,Meiotic Spindle Apparatus,Mitotic Spindle,Apparatus, Meiotic Spindle,Apparatus, Mitotic,Apparatus, Mitotic Spindle,Apparatus, Spindle,Meiotic Spindles,Mitotic Spindles,Spindle Apparatus, Meiotic,Spindle, Meiotic,Spindle, Mitotic,Spindles, Meiotic,Spindles, Mitotic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001757 Blastomeres Undifferentiated cells resulting from cleavage of a fertilized egg (ZYGOTE). Inside the intact ZONA PELLUCIDA, each cleavage yields two blastomeres of about half size of the parent cell. Up to the 8-cell stage, all of the blastomeres are totipotent. The 16-cell MORULA contains outer cells and inner cells. Blastocytes,Blastocyte,Blastomere
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014981 Xenopus An aquatic genus of the family, Pipidae, occurring in Africa and distinguished by having black horny claws on three inner hind toes.

Related Publications

S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
November 1993, Science (New York, N.Y.),
S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
August 1990, The Journal of cell biology,
S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
August 1992, Molecular reproduction and development,
S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
January 1993, Developmental genetics,
S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
November 1994, The Journal of biological chemistry,
S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
April 2007, Nature,
S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
November 1997, Molecular biology of the cell,
S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
January 2003, Journal of cell science,
S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
January 2011, PloS one,
S D Gross, and M S Schwab, and A L Lewellyn, and J L Maller
November 1988, Experimental cell research,
Copied contents to your clipboard!