Bacterial expression and characterization of functional recombinant triosephosphate isomerase from Schistosoma japonicum. 1999

W Sun, and S Liu, and P J Brindley, and D P McManus
Australian Centre for International and Tropical Health and Nutrition, The University of Queensland and The Queensland Institute of Medical Research, 300 Herston Road, Queensland, 4029, Australia.

The dimeric enzyme triosephosphate isomerase (TPI) converts glyceraldehyde-3-phosphate to dehydroxyacetone phosphate, a key reaction in glycolysis. Previous studies of the native enzyme in the human blood-flukes belonging to the genus Schistosoma have indicated that TPI is a promising anti-schistosome vaccine antigen. However, a recombinant form of the enzyme is required as an alternative to the impractical option of using biochemically purified TPI obtained from worm tissue for large-scale vaccine use. We previously cloned and sequenced a full-length cDNA encoding the TPI of the Asian (Chinese strain) schistosome Schistosoma japonicum (SjcTPI). We now report very high level bacterial expression of this cDNA and the subsequent purification of the recombinant protein to >98% homogeneity under nondenaturing conditions. The recombinant SjcTPI (re-SjcTPI) was shown to be enzymatically active with a specific activity of 7687 units/mg protein, an activity higher than that of commercially obtained porcine TPI tested concurrently under the same assay conditions. The K(m) value for the re-SjcTPI using glyceraldehyde-3-phosphate as substrate was 406.7 microM, which is similar to the K(m) values reported for the yeast enzyme and various mammalian TPIs. With the availability of substantial amounts of enzymatically active and readily purified re-SjcTPI made in bacteria we can now test whether the recombinant protein can induce a similar level of protection in vaccination/challenge experiments as the native, biochemically purified enzyme.

UI MeSH Term Description Entries
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004591 Electrophoresis, Polyacrylamide Gel Electrophoresis in which a polyacrylamide gel is used as the diffusion medium. Polyacrylamide Gel Electrophoresis,SDS-PAGE,Sodium Dodecyl Sulfate-PAGE,Gel Electrophoresis, Polyacrylamide,SDS PAGE,Sodium Dodecyl Sulfate PAGE,Sodium Dodecyl Sulfate-PAGEs
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012549 Schistosoma japonicum A species of trematode blood flukes belonging to the family Schistosomatidae whose distribution is confined to areas of the ASIA, EASTERN. The intermediate host is a snail. It occurs in man and other mammals. Schistosoma japonicums,japonicum, Schistosoma
D013053 Spectrophotometry The art or process of comparing photometrically the relative intensities of the light in different parts of the spectrum.
D014305 Triose-Phosphate Isomerase An enzyme that catalyzes reversibly the conversion of D-glyceraldehyde 3-phosphate to dihydroxyacetone phosphate. A deficiency in humans causes nonspherocytic hemolytic disease (ANEMIA, HEMOLYTIC, CONGENITAL NONSPHEROCYTIC). EC 5.3.1.1. Phosphotriose Isomerase,Triosephosphate Isomerase,Triosephosphate Mutase,Isomerase, Phosphotriose,Isomerase, Triose-Phosphate,Isomerase, Triosephosphate,Mutase, Triosephosphate,Triose Phosphate Isomerase
D015153 Blotting, Western Identification of proteins or peptides that have been electrophoretically separated by blot transferring from the electrophoresis gel to strips of nitrocellulose paper, followed by labeling with antibody probes. Immunoblotting, Western,Western Blotting,Western Immunoblotting,Blot, Western,Immunoblot, Western,Western Blot,Western Immunoblot,Blots, Western,Blottings, Western,Immunoblots, Western,Immunoblottings, Western,Western Blots,Western Blottings,Western Immunoblots,Western Immunoblottings

Related Publications

W Sun, and S Liu, and P J Brindley, and D P McManus
November 2014, Experimental parasitology,
W Sun, and S Liu, and P J Brindley, and D P McManus
January 2020, Methods in molecular biology (Clifton, N.J.),
W Sun, and S Liu, and P J Brindley, and D P McManus
November 1996, Molecular and biochemical parasitology,
W Sun, and S Liu, and P J Brindley, and D P McManus
October 2006, FEMS microbiology letters,
W Sun, and S Liu, and P J Brindley, and D P McManus
August 2000, International journal for parasitology,
W Sun, and S Liu, and P J Brindley, and D P McManus
March 1997, European journal of biochemistry,
W Sun, and S Liu, and P J Brindley, and D P McManus
December 2011, Acta crystallographica. Section D, Biological crystallography,
W Sun, and S Liu, and P J Brindley, and D P McManus
June 2011, Insect biochemistry and molecular biology,
W Sun, and S Liu, and P J Brindley, and D P McManus
October 2006, Parasitology research,
Copied contents to your clipboard!