Anomeric specificity of human liver and B-cell glucokinase: modulation by the glucokinase regulatory protein. 2000

P Courtois, and F Bource, and A Sener, and W J Malaisse
Laboratory of Experimental Medicine, Brussels Free University, 808 Route de Lennik, Brussels, B-1070, Belgium.

The anomeric specificity of the wild-type recombinant forms of human liver and B-cell glucokinase was investigated using radioactive anomers of d-glucose as tracers. With d-glucose at anomeric equilibrium and at 30 degrees C, the maximal velocity, Hill number, and K(s) amounted, respectively, to 16 micromol min(-1) mg(-1), 1.8 and 6.9 mM in the case of liver glucokinase, and 7.3 micromol min(-1) mg(-1), 2.0 and 7.1 mM in the case of B-cell glucokinase. Whether at 20-22 or 30 degrees C, the maximal velocity, Hill number, and K(m) were significantly lower with alpha-d-glucose than with beta-d-glucose in both liver and B-cell glucokinase. As a result of these differences, the reaction velocity was higher with alpha-d-glucose at low hexose concentrations, while the opposite situation prevailed at high hexose concentrations. In the presence of 0.2 mM d-fructose 6-phosphate, the glucokinase regulatory protein caused a concentration-related inhibition of d-glucose phosphorylation, such an effect fading out at high concentrations of either d-glucose or glucokinase relative to that of its regulatory protein. The phosphorylation of alpha-d-glucose by liver glucokinase appeared more resistant than that of beta-d-glucose to the inhibitory action of d-fructose 6-phosphate, as mediated by the glucokinase regulatory protein. Such a phenomenon failed to achieve statistical significance in the case of the B-cell glucokinase. It is proposed that this information, especially the novel findings concerning the anomeric difference in both Hill number and sensitivity to the glucokinase regulatory protein, should be taken into account when considering the respective contributions of alpha- and beta-d-glucose to the overall phosphorylation of equilibrated d-glucose by glucokinase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005941 Glucokinase A group of enzymes that catalyzes the conversion of ATP and D-glucose to ADP and D-glucose 6-phosphate. They are found in invertebrates and microorganisms, and are highly specific for glucose. (Enzyme Nomenclature, 1992) EC 2.7.1.2.
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006207 Half-Life The time it takes for a substance (drug, radioactive nuclide, or other) to lose half of its pharmacologic, physiologic, or radiologic activity. Halflife,Half Life,Half-Lifes,Halflifes

Related Publications

P Courtois, and F Bource, and A Sener, and W J Malaisse
April 1996, Archives of biochemistry and biophysics,
P Courtois, and F Bource, and A Sener, and W J Malaisse
February 2003, The Journal of biological chemistry,
P Courtois, and F Bource, and A Sener, and W J Malaisse
February 1985, Biochemistry international,
P Courtois, and F Bource, and A Sener, and W J Malaisse
September 1985, The Biochemical journal,
P Courtois, and F Bource, and A Sener, and W J Malaisse
January 1992, Advances in enzyme regulation,
P Courtois, and F Bource, and A Sener, and W J Malaisse
September 2013, Biochemistry,
P Courtois, and F Bource, and A Sener, and W J Malaisse
September 1991, European journal of biochemistry,
P Courtois, and F Bource, and A Sener, and W J Malaisse
October 1996, Diabetologia,
P Courtois, and F Bource, and A Sener, and W J Malaisse
October 1989, Archives internationales de physiologie et de biochimie,
Copied contents to your clipboard!