Thrombin receptor activating peptide (SFLLRN) potentiates shear-induced platelet microvesiculation. 2000

T W Chow, and J D Hellums, and P Thiagarajan
Bioengineering Department, Rice University, Houston, Texas 77251-1892, USA.

Shear-induced activation of platelets plays a major role in vascular thrombosis. Shear stress tends to increase both platelet aggregation and procoagulant activity. One mechanism for increased procoagulant activity is promotion of the transbilayer movement of anionic phospholipids from the inner to the outer leaflet of the platelet membrane bilayer. This is accompanied by vesiculation of the platelet membrane, resulting in the formation of procoagulant membrane particles called microvesicles. In this study we have examined the effect of various platelet agonists on shear-induced platelet microvesiculation and the development of platelet procoagulant activity. Normal citrated whole blood was subjected to laminar shear rate up to 12,500 sec(-1) (shear stress approximately 375 dyne/cm2) in a cone-and-plate viscometer, and the formation of platelet microvesicles was measured by flow cytometry under different conditions. Elevated levels of shear stress induced significant microvesiculation. We investigated the effects of adenosine diphosphate, epinephrine, thromboxane A2 analog, collagen, and thrombin receptor activation peptide (SFLLRN) on shear-induced platelet microvesiculation. The thrombin peptide significantly increased shear-induced microvesicle formation. In contrast, under similar conditions, the other agonists had no significant effect on shear-induced microvesiculation. These studies suggest that thrombin formed in the vicinity of primary hemostatic plugs in areas of elevated shear stress may have a major role in the propagation of thrombi by potentiating shear-induced platelet microvesiculation.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D001777 Blood Coagulation The process of the interaction of BLOOD COAGULATION FACTORS that results in an insoluble FIBRIN clot. Blood Clotting,Coagulation, Blood,Blood Clottings,Clotting, Blood
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003094 Collagen A polypeptide substance comprising about one third of the total protein in mammalian organisms. It is the main constituent of SKIN; CONNECTIVE TISSUE; and the organic substance of bones (BONE AND BONES) and teeth (TOOTH). Avicon,Avitene,Collagen Felt,Collagen Fleece,Collagenfleece,Collastat,Dermodress,Microfibril Collagen Hemostat,Pangen,Zyderm,alpha-Collagen,Collagen Hemostat, Microfibril,alpha Collagen
D003435 Crotalid Venoms Venoms from snakes of the subfamily Crotalinae or pit vipers, found mostly in the Americas. They include the rattlesnake, cottonmouth, fer-de-lance, bushmaster, and American copperhead. Their venoms contain nontoxic proteins, cardio-, hemo-, cyto-, and neurotoxins, and many enzymes, especially phospholipases A. Many of the toxins have been characterized. Bothrops Venom,Crotalidae Venoms,Pit Viper Venoms,Rattlesnake Venoms,Crotactin,Crotalid Venom,Crotalin,Crotaline Snake Venom,Crotalotoxin,Crotamin,Pit Viper Venom,Rattlesnake Venom,Snake Venom, Crotaline,Venom, Bothrops,Venom, Crotalid,Venom, Crotaline Snake,Venom, Pit Viper,Venom, Rattlesnake,Venoms, Crotalid,Venoms, Crotalidae,Venoms, Pit Viper,Venoms, Rattlesnake,Viper Venom, Pit
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D005434 Flow Cytometry Technique using an instrument system for making, processing, and displaying one or more measurements on individual cells obtained from a cell suspension. Cells are usually stained with one or more fluorescent dyes specific to cell components of interest, e.g., DNA, and fluorescence of each cell is measured as it rapidly transverses the excitation beam (laser or mercury arc lamp). Fluorescence provides a quantitative measure of various biochemical and biophysical properties of the cell, as well as a basis for cell sorting. Other measurable optical parameters include light absorption and light scattering, the latter being applicable to the measurement of cell size, shape, density, granularity, and stain uptake. Cytofluorometry, Flow,Cytometry, Flow,Flow Microfluorimetry,Fluorescence-Activated Cell Sorting,Microfluorometry, Flow,Cell Sorting, Fluorescence-Activated,Cell Sortings, Fluorescence-Activated,Cytofluorometries, Flow,Cytometries, Flow,Flow Cytofluorometries,Flow Cytofluorometry,Flow Cytometries,Flow Microfluorometries,Flow Microfluorometry,Fluorescence Activated Cell Sorting,Fluorescence-Activated Cell Sortings,Microfluorimetry, Flow,Microfluorometries, Flow,Sorting, Fluorescence-Activated Cell,Sortings, Fluorescence-Activated Cell

Related Publications

T W Chow, and J D Hellums, and P Thiagarajan
September 1998, Arteriosclerosis, thrombosis, and vascular biology,
T W Chow, and J D Hellums, and P Thiagarajan
December 1994, Biochemical and biophysical research communications,
T W Chow, and J D Hellums, and P Thiagarajan
November 1996, The Journal of laboratory and clinical medicine,
T W Chow, and J D Hellums, and P Thiagarajan
July 1994, Biochemical and biophysical research communications,
T W Chow, and J D Hellums, and P Thiagarajan
December 1993, Thrombosis and haemostasis,
T W Chow, and J D Hellums, and P Thiagarajan
January 1995, The American journal of physiology,
T W Chow, and J D Hellums, and P Thiagarajan
June 2001, The journal of peptide research : official journal of the American Peptide Society,
Copied contents to your clipboard!