Pretreatment of human platelets with plasmin inhibits responses to thrombin, but potentiates responses to low concentrations of aggregating agents, including the thrombin receptor activating peptide, SFLLRN. 1997

R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
Department of Pathology, McMaster University, Hamilton, Ontario, Canada.

Effects of plasmin on platelets, that influence subsequent responses to aggregating agents, are relevant to attempts to prevent rethrombosis following administration of fibrinolytic agents. We describe plasmin-induced inhibition of platelet responses to thrombin, but potentiation of responses to other aggregating agents. Washed human platelets were labeled with 14C-serotonin, treated for 30 min at 37 degrees C with 0, 0.1 or 0.2 CU/ml of plasmin, followed by aprotinin, washed and resuspended in a Tyrode-albumin solution with apyrase. Incubation with 0.2 CU/ml of plasmin almost completely inhibited thrombin-induced (0.1 U/ml) aggregation, release of 14C-serotonin, and increase in cytosolic [Ca2+]. In contrast, with plasmin-pretreated platelets, aggregation and release of 14C-serotonin were strongly potentiated in response to low concentrations of the thrombin receptor-activating peptide SFLLRN, ADP, platelet-activating factor, collagen, arachidonic acid, the thromboxane mimetic U46619, and the calcium ionophores A23187 and ionomycin. Aspirin or RGDS partially inhibited potentiation. Plasmin-pretreated platelets resuspended in plasma anticoagulated with FPRCH2Cl (PPACK) also showed enhanced responses to aggregating agents other than thrombin. The contrasting effects on responses to thrombin and SFLLRN are noteworthy. Plasmin cleaves GPIIb/IIIa so that it becomes a competent fibrinogen receptor, and binding of 125I-fibrinogen during ADP-induced aggregation was greatly potentiated within 10 s. Potentiation of aggregation by other agonists may be due to increased binding of released fibrinogen. Thus, platelets freed from a thrombus may have increased responsiveness to low concentrations of aggregating agents other than thrombin. These results provide further support for the use of inhibitors of platelet reactions in conjunction with administration of fibrinolytic agents.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010974 Platelet Aggregation The attachment of PLATELETS to one another. This clumping together can be induced by a number of agents (e.g., THROMBIN; COLLAGEN) and is part of the mechanism leading to the formation of a THROMBUS. Aggregation, Platelet
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D003594 Cytoplasmic Granules Condensed areas of cellular material that may be bounded by a membrane. Cytoplasmic Granule,Granule, Cytoplasmic,Granules, Cytoplasmic
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D005340 Fibrinogen Plasma glycoprotein clotted by thrombin, composed of a dimer of three non-identical pairs of polypeptide chains (alpha, beta, gamma) held together by disulfide bonds. Fibrinogen clotting is a sol-gel change involving complex molecular arrangements: whereas fibrinogen is cleaved by thrombin to form polypeptides A and B, the proteolytic action of other enzymes yields different fibrinogen degradation products. Coagulation Factor I,Factor I,Blood Coagulation Factor I,gamma-Fibrinogen,Factor I, Coagulation,gamma Fibrinogen
D005341 Fibrinolysin A product of the lysis of plasminogen (profibrinolysin) by PLASMINOGEN activators. It is composed of two polypeptide chains, light (B) and heavy (A), with a molecular weight of 75,000. It is the major proteolytic enzyme involved in blood clot retraction or the lysis of fibrin and quickly inactivated by antiplasmins. Plasmin,Fibrogammin,Glu-Plasmin,Protease F,Thrombolysin,Glu Plasmin
D005343 Fibrinolytic Agents Fibrinolysin or agents that convert plasminogen to FIBRINOLYSIN. Antithrombic Drug,Antithrombotic Agent,Antithrombotic Agents,Fibrinolytic Agent,Fibrinolytic Drug,Thrombolytic Agent,Thrombolytic Agents,Thrombolytic Drug,Antithrombic Drugs,Fibrinolytic Drugs,Thrombolytic Drugs,Agent, Antithrombotic,Agent, Fibrinolytic,Agent, Thrombolytic,Agents, Antithrombotic,Drug, Antithrombic,Drug, Fibrinolytic,Drug, Thrombolytic,Drugs, Antithrombic

Related Publications

R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
January 2000, The Journal of laboratory and clinical medicine,
R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
September 1998, Arteriosclerosis, thrombosis, and vascular biology,
R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
December 1994, Biochemical and biophysical research communications,
R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
May 1999, The Journal of biological chemistry,
R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
May 1997, The Journal of pharmacology and experimental therapeutics,
R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
May 2001, Journal of cardiovascular pharmacology,
R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
January 1995, The American journal of physiology,
R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
June 2001, The journal of peptide research : official journal of the American Peptide Society,
R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
April 1984, Thrombosis and haemostasis,
R L Kinlough-Rathbone, and D W Perry, and M L Rand, and M A Packham
January 1998, Biorheology,
Copied contents to your clipboard!