Molecular genetics and mechanism of autosomal dominant polycystic kidney disease. 2000

G Wu, and S Somlo
Section of Nephrology, Yale School of Medicine, New Haven, Connecticut, 06520, USA. quanqing.wu@yale.edu

Considerable progress toward understanding pathogenesis of autosomal dominant polycystic disease (ADPKD) has been made during the past 15 years. ADPKD is a heterogeneous human disease resulting from mutations in either of two genes, PKD1 and PKD2. The similarity in the clinical presentation and evidence of direct interaction between the COOH termini of polycystin-1 and polycystin-2, the respective gene products, suggest that both proteins act in the same molecular pathway. The fact that most mutations from ADPKD patients result in truncated polycystins as well as evidence of a loss of heterozygosity mechanism in individual PKD cysts indicate that the loss of the function of either PKD1 or PKD2 is the most likely pathogenic mechanism for ADPKD. A novel mouse model, WS25, has been generated with a targeted mutation at Pkd2 locus in which a mutant exon 1 created by inserting a neo(r) cassette exists in tandem with the wild-type exon 1. This causes an unstable allele that undergoes secondary recombination to produce a true null allele at Pkd2 locus. Therefore, the model Pkd2(WS25/-), which carries the WS25 unstable allele and a true null allele, produces somatic second hits during mouse development or adult life and establishes an extremely faithful model of human ADPKD.

UI MeSH Term Description Entries
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016891 Polycystic Kidney, Autosomal Dominant Kidney disorders with autosomal dominant inheritance and characterized by multiple CYSTS in both KIDNEYS with progressive deterioration of renal function. Autosomal Dominant Polycystic Kidney,Kidney, Polycystic, Autosomal Dominant,ADPKD,Adult Polycystic Kidney Disease,Adult Polycystic Kidney Disease Type 1,Adult Polycystic Kidney Disease Type 2,Polycystic Kidney Disease 2,Polycystic Kidney Disease, Adult,Polycystic Kidney Disease, Adult Type 2,Polycystic Kidney Disease, Adult, Type II,Polycystic Kidney Disease, Autosomal Dominant,Polycystic Kidney Disease, Type 2,Polycystic Kidney, Type 1 Autosomal Dominant Disease,Polycystic Kidney, Type 2 Autosomal Dominant Disease
D050396 TRPP Cation Channels A subgroup of TRP cation channels that are widely expressed in various cell types. Defects are associated with POLYCYSTIC KIDNEY DISEASES. Polycystin,Polycystins,Cation Channels, TRPP,Channels, TRPP Cation
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018345 Mice, Knockout Strains of mice in which certain GENES of their GENOMES have been disrupted, or "knocked-out". To produce knockouts, using RECOMBINANT DNA technology, the normal DNA sequence of the gene being studied is altered to prevent synthesis of a normal gene product. Cloned cells in which this DNA alteration is successful are then injected into mouse EMBRYOS to produce chimeric mice. The chimeric mice are then bred to yield a strain in which all the cells of the mouse contain the disrupted gene. Knockout mice are used as EXPERIMENTAL ANIMAL MODELS for diseases (DISEASE MODELS, ANIMAL) and to clarify the functions of the genes. Knockout Mice,Mice, Knock-out,Mouse, Knockout,Knock-out Mice,Knockout Mouse,Mice, Knock out
D019656 Loss of Heterozygosity The loss of one allele at a specific locus, caused by a deletion mutation; or loss of a chromosome from a chromosome pair, resulting in abnormal HEMIZYGOSITY. It is detected when heterozygous markers for a locus appear monomorphic because one of the ALLELES was deleted. Allelic Loss,Heterozygosity, Loss of,Allelic Losses,Heterozygosity Loss

Related Publications

G Wu, and S Somlo
October 2003, Clinical and investigative medicine. Medecine clinique et experimentale,
G Wu, and S Somlo
February 2003, The Journal of laboratory and clinical medicine,
G Wu, and S Somlo
June 1989, Seminars in nephrology,
G Wu, and S Somlo
January 2001, Annual review of medicine,
G Wu, and S Somlo
March 2000, Frontiers in bioscience : a journal and virtual library,
G Wu, and S Somlo
January 2017, Contributions to nephrology,
G Wu, and S Somlo
January 2001, Current opinion in nephrology and hypertension,
G Wu, and S Somlo
September 1992, The Clinical investigator,
G Wu, and S Somlo
January 2011, Nephron. Clinical practice,
Copied contents to your clipboard!