Mechanism of endothelin-1-induced contraction in rabbit basilar artery. 2000

A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.

OBJECTIVE Endothelin-1 (ET-1) is suggested to be a major cause of cerebral vasospasm after subarachnoid hemorrhage. However, the mechanism of ET-1-induced contraction in cerebral arteries remains unclear. This study was undertaken to demonstrate the possible role of protein tyrosine kinase (PTK), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC) in ET-1-induced contraction. METHODS PD-98059, damnacanthal, wortmannin, AG-490, genistein, calphostin C, and staurosporine were used to inhibit, or relax, the ET-1-induced contraction of basilar artery, studied with an isometric tension system. Immunoprecipitation of MAPK in ET-1-stimultated rings of basilar artery without or with the above inhibitors was studied with Western blot. RESULTS (1) ET-1 produced concentration-dependent contraction and MAPK immunoprecipitation in rabbit basilar artery by activation of ET(A) but not ET(B) receptors. (2) MAPK inhibitors PD-98059 and U-0126 produced dose-dependent inhibition of ET-1-induced contraction. (3) The Src tyrosine kinase inhibitor damnacanthal, the phosphatidylinositol-3 kinase inhibitor wortmannin, and the Janus tyrosine kinase(2) inhibitor AG-490 abolished ET-1-induced contraction. (4) The PKC inhibitor staurosporine but not calphostin C abolished ET-1-induced contraction, and the PTK inhibitor genistein partially reduced ET-1-induced contraction. (5) In arteries precontracted by ET-1, PD-98059, U-0126, wortmannin, AG-490, genistein, and staurosporine produced concentration-dependent relaxation. (6) ET-1 induced a biphasic and time-dependent MAPK immunoprecipitation. (7) PD-98059, U-0126, genistein, AG-490, and damnacanthal, but not staurosporine or wortmannin, abolished the effect of ET-1 on MAPK immunoreactivity. CONCLUSIONS This study demonstrated that MAPK may be involved in ET-1-induced contraction in rabbit basilar artery. MAPK is downstream of PTK, Src, and Janus tyrosine kinase pathways but may not be downstream of phosphatidylinositol-3 kinase pathways. The possible involvement of PKC in ET-1-induced contraction requires further investigation. Inhibition of these pathways may offer alternative treatment for ET-1-induced contraction and cerebral vasospasm.

UI MeSH Term Description Entries
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001488 Basilar Artery The artery formed by the union of the right and left vertebral arteries; it runs from the lower to the upper border of the pons, where it bifurcates into the two posterior cerebral arteries. Arteries, Basilar,Artery, Basilar,Basilar Arteries
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D019332 Endothelin-1 A 21-amino acid peptide produced in a variety of tissues including endothelial and vascular smooth-muscle cells, neurons and astrocytes in the central nervous system, and endometrial cells. It acts as a modulator of vasomotor tone, cell proliferation, and hormone production. (N Eng J Med 1995;333(6):356-63) Big Endothelin,Big Endothelin-1,Endothelin Type 1,Endothelin, Big,Preproendothelin,Preproendothelin-1,Proendothelin (1-38),Proendothelin-1 Precursor,Big Endothelin 1,Endothelin 1,Endothelin-1, Big,Precursor, Proendothelin-1,Preproendothelin 1,Proendothelin 1 Precursor
D020935 MAP Kinase Signaling System An intracellular signaling system involving the mitogen-activated protein kinase cascades (three-membered protein kinase cascades). Various upstream activators, which act in response to extracellular stimuli, trigger the cascades by activating the first member of a cascade, MAP KINASE KINASE KINASES; (MAPKKKs). Activated MAPKKKs phosphorylate MITOGEN-ACTIVATED PROTEIN KINASE KINASES which in turn phosphorylate the MITOGEN-ACTIVATED PROTEIN KINASES; (MAPKs). The MAPKs then act on various downstream targets to affect gene expression. In mammals, there are several distinct MAP kinase pathways including the ERK (extracellular signal-regulated kinase) pathway, the SAPK/JNK (stress-activated protein kinase/c-jun kinase) pathway, and the p38 kinase pathway. There is some sharing of components among the pathways depending on which stimulus originates activation of the cascade. MAP Kinase Cascade,MAP Kinase Module,MAP Kinase Signaling Cascade,MAP Kinase Signaling Pathway,MAP Kinase Signaling Pathways,ERK Pathway,ERK Signal Tranduction Pathway,ERK1 and ERK2 Pathway,ERK1-2 Pathway,JNK Pathway,JNK Signaling Pathway,MAP Kinase Modules,MAP Kinase Signaling Cascades,MEK-ERK Pathway,p38 Kinase Pathway,p38 Kinase Signaling Pathway,Cascade, MAP Kinase,ERK Pathways,ERK1 2 Pathway,ERK1-2 Pathways,JNK Pathways,JNK Signaling Pathways,Kinase Cascade, MAP,Kinase Pathway, p38,Kinase Pathways, p38,MAP Kinase Cascades,MEK ERK Pathway,MEK-ERK Pathways,Module, MAP Kinase,Pathway, ERK,Pathway, ERK1-2,Pathway, JNK,Pathway, JNK Signaling,Pathway, MEK-ERK,Pathway, p38 Kinase,Pathways, ERK,Pathways, ERK1-2,Pathways, JNK,Pathways, JNK Signaling,Pathways, MEK-ERK,Pathways, p38 Kinase,Signaling Pathway, JNK,Signaling Pathways, JNK,p38 Kinase Pathways

Related Publications

A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
September 2002, American journal of physiology. Heart and circulatory physiology,
A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
November 2001, American journal of physiology. Heart and circulatory physiology,
A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
February 2004, European journal of pharmacology,
A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
September 2002, Journal of cardiovascular pharmacology,
A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
January 2001, Acta neurochirurgica. Supplement,
A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
February 2009, Neurological research,
A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
January 1995, Journal of cardiovascular pharmacology,
A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
February 2003, Journal of cardiovascular pharmacology,
A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
November 2002, Acta neurochirurgica,
A Y Zubkov, and K S Rollins, and A D Parent, and J Zhang, and R M Bryan
January 1995, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!