Characterization of Ca2+ channels involved in endothelin-1-induced contraction of rabbit basilar artery. 2002

Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan. ykawanabe@rics.bwh.harvard.edu

This study attempted to characterize Ca2+ channels involved in endothelin-1-induced contraction of rabbit basilar artery using whole-cell patch-clamp and measurement of intracellular free Ca2+ concentration. Endothelin-1 activates two types of Ca2+-permeable nonselective cation channels (NSCC-1 and NSCC-2) and a store-operated Ca2+ channel (SOCC) in addition to the voltage-operated Ca2+ channel (VOCC). These channels can be discriminated using Ca2+ channel blockers, SK&F 96365 and LOE 908. Tension study was conducted to clarify the Ca2+ channels involved in endothelin-1-induced contraction of basilar artery. Endothelin-1-induced basilar artery contraction is fully dependent on extracellular Ca2+ influx. Based on sensitivity to nifedipine, an L-type VOCC blocker, VOCCs have a minor role in endothelin-1-induced contraction. Both LOE 908 and SK&F 96365 inhibit endothelin-1-induced contraction in a concentration-dependent manner, and their combination abolished it. The median inhibitory concentrations of these blockers for endothelin-1-induced contraction correlated well with those of the endothelin-1-induced [Ca2+]i responses. Thus, the inhibitory action of these blockers on endothelin-1-induced contraction may be mediated by blockade of NSCC-1, NSCC-2, and the SOCC. Extracellular Ca2+ influx through NSCC-1, NSCC-2, and SOCC may be essential for endothelin-1-induced basilar artery contraction.

UI MeSH Term Description Entries
D008297 Male Males
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001488 Basilar Artery The artery formed by the union of the right and left vertebral arteries; it runs from the lower to the upper border of the pons, where it bifurcates into the two posterior cerebral arteries. Arteries, Basilar,Artery, Basilar,Basilar Arteries
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
February 2000, Stroke,
Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
November 2001, American journal of physiology. Heart and circulatory physiology,
Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
February 2004, European journal of pharmacology,
Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
January 1995, Journal of cardiovascular pharmacology,
Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
January 2001, Acta neurochirurgica. Supplement,
Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
September 2002, American journal of physiology. Heart and circulatory physiology,
Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
February 2009, Neurological research,
Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
November 2004, Journal of cardiovascular pharmacology,
Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
January 1991, General pharmacology,
Yoshifumi Kawanabe, and Nobuo Hashimoto, and Tomoh Masaki
February 2003, Journal of cardiovascular pharmacology,
Copied contents to your clipboard!