Assay of glycoamidases and endo-beta-N-acetylglucosaminidases by lectin capture and dissociation-enhanced lanthanide fluorescence immunoassay. 2000

I L Deras, and M Sano, and I Kato, and Y C Lee
Department of Biology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA.

We have developed an assay system for endo-beta-N-acetylglucosaminidase and glycoamidase (PNGase), using Eu(3+)-labeled Man(9)GlcNAc(2) glycopeptides as substrates in combination with lectin capture. Two glycopeptides of different peptide lengths, derived from soybean agglutinin, were labeled with Eu(3+) via a diethylenetriaminepentaacetate (DTPA) chelating linker and served as substrates for two types of enzymes: one with (Man(9)GlcNAc(2))Asn for endo-beta-N-acetylglucosaminidase and the other with Ala-Ser-Phe-(Man(9)GlcNAc(2))Asn-Phe-Thr for glycoamidase activities. Following enzymatic hydrolysis, concanavalin A, immobilized or soluble, was added to the mixture to bind unreacted substrate and unlabeled hydrolysis product. The labeled peptide product could then be separated from the lectin-bound complexes by filtration for quantification by dissociation-enhanced lanthanide fluorescence immunoassay. Activities as low as 2 fmol min(-1) could be rapidly quantified for both types of enzymes, and enzymological parameters could be determined within minutes. Applicability of the assay was tested for identification of a glycoamidase activity peak in the fractionation of sweet almond emulsin, a classic example. This assay offers sensitivity, ease of use, and high throughput. In addition, it is versatile and should be applicable to other glycobiology enzyme systems.

UI MeSH Term Description Entries
D007118 Immunoassay A technique using antibodies for identifying or quantifying a substance. Usually the substance being studied serves as antigen both in antibody production and in measurement of antibody by the test substance. Immunochromatographic Assay,Assay, Immunochromatographic,Assays, Immunochromatographic,Immunoassays,Immunochromatographic Assays
D008674 Metals, Rare Earth A group of elements that include SCANDIUM; YTTRIUM; and the LANTHANOID SERIES ELEMENTS. Historically, the rare earth metals got their name from the fact that they were never found in their pure elemental form, but as an oxide. In addition, they were very difficult to purify. They are not truly rare and comprise about 25% of the metals in the earth's crust. Rare Earth Metal,Rare Earth Metals,Earth Metal, Rare,Earth Metals, Rare,Metal, Rare Earth
D010944 Plants Multicellular, eukaryotic life forms of kingdom Plantae. Plants acquired chloroplasts by direct endosymbiosis of CYANOBACTERIA. They are characterized by a mainly photosynthetic mode of nutrition; essentially unlimited growth at localized regions of cell divisions (MERISTEMS); cellulose within cells providing rigidity; the absence of organs of locomotion; absence of nervous and sensory systems; and an alternation of haploid and diploid generations. It is a non-taxonomical term most often referring to LAND PLANTS. In broad sense it includes RHODOPHYTA and GLAUCOPHYTA along with VIRIDIPLANTAE. Plant
D005453 Fluorescence The property of emitting radiation while being irradiated. The radiation emitted is usually of longer wavelength than that incident or absorbed, e.g., a substance can be irradiated with invisible radiation and emit visible light. X-ray fluorescence is used in diagnosis.
D017038 Mannosyl-Glycoprotein Endo-beta-N-Acetylglucosaminidase A group of related enzymes responsible for the endohydrolysis of the di-N-acetylchitobiosyl unit in high-mannose-content glycopeptides and GLYCOPROTEINS. Di-N-Acetylchitobiosyl beta-N-Acetylglucosaminidase,Endo-beta-Acetylglucosaminidase,Endoglycosidase F,Endo D Endoglucosaminidase,Endo F Endoglucosaminidase,Endo H Endoglucosaminidase,Endo-N-Acetyl-beta-d-glucosaminidase,Endo-beta-N-Acetylglucosaminidase D,Endo-beta-N-Acetylglucosaminidase F,Endo-beta-N-Acetylglucosaminidase H,Endoglucosaminidase D,Endoglucosaminidase F,Endoglucosaminidase H,Endoglucosidase H,Endoglycosidase D,Endohexosaminidase F,Endohexosaminidase H,Peptide N-Glycosidase F,Di N Acetylchitobiosyl beta N Acetylglucosaminidase,Endo N Acetyl beta d glucosaminidase,Endo beta Acetylglucosaminidase,Endo beta N Acetylglucosaminidase D,Endo beta N Acetylglucosaminidase F,Endo beta N Acetylglucosaminidase H,Endo-beta-N-Acetylglucosaminidase, Mannosyl-Glycoprotein,Mannosyl Glycoprotein Endo beta N Acetylglucosaminidase,Peptide N Glycosidase F,beta-N-Acetylglucosaminidase, Di-N-Acetylchitobiosyl
D037102 Lectins Proteins that share the common characteristic of binding to carbohydrates. Some ANTIBODIES and carbohydrate-metabolizing proteins (ENZYMES) also bind to carbohydrates, however they are not considered lectins. PLANT LECTINS are carbohydrate-binding proteins that have been primarily identified by their hemagglutinating activity (HEMAGGLUTININS). However, a variety of lectins occur in animal species where they serve diverse array of functions through specific carbohydrate recognition. Animal Lectin,Animal Lectins,Isolectins,Lectin,Isolectin,Lectin, Animal,Lectins, Animal
D037121 Plant Lectins Protein or glycoprotein substances of plant origin that bind to sugar moieties in cell walls or membranes. Some carbohydrate-metabolizing proteins (ENZYMES) from PLANTS also bind to carbohydrates, however they are not considered lectins. Many plant lectins change the physiology of the membrane of BLOOD CELLS to cause agglutination, mitosis, or other biochemical changes. They may play a role in plant defense mechanisms. Lectins, Plant,Phytagglutinin,Plant Agglutinin,Plant Lectin,Agglutinins, Plant,Phytagglutinins,Plant Agglutinins,Agglutinin, Plant,Lectin, Plant

Related Publications

I L Deras, and M Sano, and I Kato, and Y C Lee
March 2005, Biochemical and biophysical research communications,
I L Deras, and M Sano, and I Kato, and Y C Lee
June 1992, Clinical chemistry,
I L Deras, and M Sano, and I Kato, and Y C Lee
April 2021, Scientific reports,
I L Deras, and M Sano, and I Kato, and Y C Lee
January 1978, Methods in enzymology,
I L Deras, and M Sano, and I Kato, and Y C Lee
March 1994, Journal of molecular biology,
I L Deras, and M Sano, and I Kato, and Y C Lee
June 1989, The Journal of biological chemistry,
I L Deras, and M Sano, and I Kato, and Y C Lee
August 1981, Biochimica et biophysica acta,
I L Deras, and M Sano, and I Kato, and Y C Lee
September 1977, Biochemical and biophysical research communications,
I L Deras, and M Sano, and I Kato, and Y C Lee
October 1975, Biochemical and biophysical research communications,
I L Deras, and M Sano, and I Kato, and Y C Lee
July 1991, Journal of biochemistry,
Copied contents to your clipboard!