Fungal gliotoxin targets the onset of superoxide-generating NADPH oxidase of human neutrophils. 2000

L S Yoshida, and S Abe, and S Tsunawaki
Department of Infectious Disease, National Children's Medical Research Center, 3-35-31, Taishido, Setagaya-ku, Tokyo, 154-8509, Japan.

Gliotoxin from Aspergillus, bearing a S&bond;S bond in its structure, prevented the onset of O(-)(2) generation by the human neutrophil NADPH oxidase in response to phorbol myristate acetate (PMA). Gliotoxin affected the activation process harder than the activated oxidase, as shown by its stronger inhibition when added to neutrophils prior to, than post-PMA at maximum enzyme turnover. Decreased O(-)(2) generation persisted even if cells treated with gliotoxin were subsequently washed, with half-inhibition concentrations (IC(50)) of 5.3, and 3.5 microM for treatments of 15 and 30 min, respectively. In addition, gliotoxin made neutrophils reduce cytochrome c regardless of absence of PMA, through its reaction with intracellular reductants in an oxygen-dependent process, named redox cycling. Thus, we next tested whether preincubation of neutrophils with gliotoxin under hypoxic conditions would relieve the inhibition of NADPH oxidase. Instead, this prevention of redox cycling significantly favored damage to the NADPH oxidase with an IC(50) of 0.009 microM. Moreover, conversion of gliotoxin to its dithiol derivative by addition of reduced dithiothreitol during incubation protected cells from losing oxidase activity. These findings support that the disulfide form of gliotoxin targets NADPH oxidase activation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009504 Neutrophils Granular leukocytes having a nucleus with three to five lobes connected by slender threads of chromatin, and cytoplasm containing fine inconspicuous granules and stainable by neutral dyes. LE Cells,Leukocytes, Polymorphonuclear,Polymorphonuclear Leukocytes,Polymorphonuclear Neutrophils,Neutrophil Band Cells,Band Cell, Neutrophil,Cell, LE,LE Cell,Leukocyte, Polymorphonuclear,Neutrophil,Neutrophil Band Cell,Neutrophil, Polymorphonuclear,Polymorphonuclear Leukocyte,Polymorphonuclear Neutrophil
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D003574 Cytochrome c Group A group of cytochromes with covalent thioether linkages between either or both of the vinyl side chains of protoheme and the protein. (Enzyme Nomenclature, 1992, p539) Cytochromes Type c,Group, Cytochrome c,Type c, Cytochromes
D004229 Dithiothreitol A reagent commonly used in biochemical studies as a protective agent to prevent the oxidation of SH (thiol) groups and for reducing disulphides to dithiols. Cleland Reagent,Cleland's Reagent,Sputolysin,Clelands Reagent,Reagent, Cleland,Reagent, Cleland's
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D005912 Gliotoxin A fungal toxin produced by various species of Trichoderma, Gladiocladium fimbriatum, Aspergillus fumigatus, and Penicillium. It is used as an immunosuppressive agent. Aspergillin,Gliotoxins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D013481 Superoxides Highly reactive compounds produced when oxygen is reduced by a single electron. In biological systems, they may be generated during the normal catalytic function of a number of enzymes and during the oxidation of hemoglobin to METHEMOGLOBIN. In living organisms, SUPEROXIDE DISMUTASE protects the cell from the deleterious effects of superoxides. Superoxide Radical,Superoxide,Superoxide Anion

Related Publications

L S Yoshida, and S Abe, and S Tsunawaki
January 2005, Infection and immunity,
L S Yoshida, and S Abe, and S Tsunawaki
June 2004, Infection and immunity,
L S Yoshida, and S Abe, and S Tsunawaki
September 1987, The Biochemical journal,
L S Yoshida, and S Abe, and S Tsunawaki
May 1983, The Journal of biological chemistry,
L S Yoshida, and S Abe, and S Tsunawaki
April 1986, The Journal of biological chemistry,
L S Yoshida, and S Abe, and S Tsunawaki
April 1991, The Biochemical journal,
L S Yoshida, and S Abe, and S Tsunawaki
March 1992, Biochemical pharmacology,
L S Yoshida, and S Abe, and S Tsunawaki
October 2004, The Journal of biological chemistry,
Copied contents to your clipboard!