A neutralizing recombinant human antibody Fab fragment against Puumala hantavirus. 2000

C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
Microbiology and Tumorbiology Center, Karolinska Institute, Stockholm, Sweden.

A combinatorial human antibody Fab pComb3H library, generated from splenic lymphocytes of a Puumala hantavirus (PUUV) immune individual, was selected against PUUV using the phage display technique. Panning was carried out with antigens immobilized by MAbs directed to the two PUUV envelope glycoproteins G1 and G2. Thirteen Fabs, with reactivity directed to PUUV and specifically the G2 protein, as assessed by immunofluorescence and ELISA respectively, were isolated in crude preparations. By a focus reduction neutralization test (FRNT), four of the 13 crude Fab preparations exhibited type-specific neutralization of PUUV (strain Sotkamo) with 44-54% reduction in the number of foci. After affinity purification, the four Fab clones exhibited 50% focus reduction of PUUV at concentrations below 2 microg/ml. Sequencing of the heavy and light chain complementarity determining regions (CDR) 1-3 showed that the four selected clones were identical within the antibody binding regions. In inhibition tests with the PUUV G2-specific MAbs, 4G2 and 1C9, a new epitope important for neutralization, designated as G2-a3, was defined. This epitope, overlapping partially the neutralizing epitope recognized by the human MAb 1C9, seems to be unique for the PUUV serotype since none of the Fab clones neutralized any of the other hantaviruses tested.

UI MeSH Term Description Entries
D007135 Immunoglobulin Variable Region That region of the immunoglobulin molecule that varies in its amino acid sequence and composition, and comprises the binding site for a specific antigen. It is located at the N-terminus of the Fab fragment of the immunoglobulin. It includes hypervariable regions (COMPLEMENTARITY DETERMINING REGIONS) and framework regions. Variable Region, Ig,Variable Region, Immunoglobulin,Framework Region, Immunoglobulin,Fv Antibody Fragments,Fv Fragments,Ig Framework Region,Ig Variable Region,Immunoglobulin Framework Region,Immunoglobulin Fv Fragments,Immunoglobulin V,Antibody Fragment, Fv,Antibody Fragments, Fv,Fragment, Fv,Fragment, Fv Antibody,Fragment, Immunoglobulin Fv,Fragments, Fv,Fragments, Fv Antibody,Fragments, Immunoglobulin Fv,Framework Region, Ig,Framework Regions, Ig,Framework Regions, Immunoglobulin,Fv Antibody Fragment,Fv Fragment,Fv Fragment, Immunoglobulin,Fv Fragments, Immunoglobulin,Ig Framework Regions,Ig Variable Regions,Immunoglobulin Framework Regions,Immunoglobulin Fv Fragment,Immunoglobulin Variable Regions,Regions, Immunoglobulin Variable,Variable Regions, Ig,Variable Regions, Immunoglobulin
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D007143 Immunoglobulin Heavy Chains The largest of polypeptide chains comprising immunoglobulins. They contain 450 to 600 amino acid residues per chain, and have molecular weights of 51-72 kDa. Immunoglobulins, Heavy-Chain,Heavy-Chain Immunoglobulins,Ig Heavy Chains,Immunoglobulin Heavy Chain,Immunoglobulin Heavy Chain Subgroup VH-I,Immunoglobulin Heavy Chain Subgroup VH-III,Heavy Chain Immunoglobulins,Heavy Chain, Immunoglobulin,Heavy Chains, Ig,Heavy Chains, Immunoglobulin,Immunoglobulin Heavy Chain Subgroup VH I,Immunoglobulin Heavy Chain Subgroup VH III,Immunoglobulins, Heavy Chain
D007147 Immunoglobulin Light Chains Polypeptide chains, consisting of 211 to 217 amino acid residues and having a molecular weight of approximately 22 kDa. There are two major types of light chains, kappa and lambda. Two Ig light chains and two Ig heavy chains (IMMUNOGLOBULIN HEAVY CHAINS) make one immunoglobulin molecule. Ig Light Chains,Immunoglobulins, Light-Chain,Immunoglobulin Light Chain,Immunoglobulin Light-Chain,Light-Chain Immunoglobulins,Chains, Ig Light,Chains, Immunoglobulin Light,Immunoglobulins, Light Chain,Light Chain Immunoglobulins,Light Chain, Immunoglobulin,Light Chains, Ig,Light Chains, Immunoglobulin,Light-Chain, Immunoglobulin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009500 Neutralization Tests The measurement of infection-blocking titer of ANTISERA by testing a series of dilutions for a given virus-antiserum interaction end-point, which is generally the dilution at which tissue cultures inoculated with the serum-virus mixtures demonstrate cytopathology (CPE) or the dilution at which 50% of test animals injected with serum-virus mixtures show infectivity (ID50) or die (LD50). Neutralization Test,Test, Neutralization,Tests, Neutralization
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D002522 Chlorocebus aethiops A species of CERCOPITHECUS containing three subspecies: C. tantalus, C. pygerythrus, and C. sabeus. They are found in the forests and savannah of Africa. The African green monkey is the natural host of SIMIAN IMMUNODEFICIENCY VIRUS and is used in AIDS research. African Green Monkey,Cercopithecus aethiops,Cercopithecus griseoviridis,Cercopithecus griseus,Cercopithecus pygerythrus,Cercopithecus sabeus,Cercopithecus tantalus,Chlorocebus cynosuros,Chlorocebus cynosurus,Chlorocebus pygerythrus,Green Monkey,Grivet Monkey,Lasiopyga weidholzi,Malbrouck,Malbrouck Monkey,Monkey, African Green,Monkey, Green,Monkey, Grivet,Monkey, Vervet,Savanah Monkey,Vervet Monkey,Savannah Monkey,African Green Monkey,Chlorocebus cynosuro,Green Monkey, African,Green Monkeys,Grivet Monkeys,Malbrouck Monkeys,Malbroucks,Monkey, Malbrouck,Monkey, Savanah,Monkey, Savannah,Savannah Monkeys,Vervet Monkeys
D004797 Enzyme-Linked Immunosorbent Assay An immunoassay utilizing an antibody labeled with an enzyme marker such as horseradish peroxidase. While either the enzyme or the antibody is bound to an immunosorbent substrate, they both retain their biologic activity; the change in enzyme activity as a result of the enzyme-antibody-antigen reaction is proportional to the concentration of the antigen and can be measured spectrophotometrically or with the naked eye. Many variations of the method have been developed. ELISA,Assay, Enzyme-Linked Immunosorbent,Assays, Enzyme-Linked Immunosorbent,Enzyme Linked Immunosorbent Assay,Enzyme-Linked Immunosorbent Assays,Immunosorbent Assay, Enzyme-Linked,Immunosorbent Assays, Enzyme-Linked
D006476 Orthohantavirus A genus of the family BUNYAVIRIDAE causing HANTAVIRUS INFECTIONS, first identified during the Korean war. Infection is found primarily in rodents and humans. Transmission does not appear to involve arthropods. HANTAAN VIRUS is the type species. Dobrava-Belgrade Virus,Hantavirus,Andes Hantavirus,Andes Virus,Andes Hantaviruses,Dobrava Belgrade Virus,Hantavirus, Andes,Hantaviruses,Hantaviruses, Andes,Orthohantaviruses

Related Publications

C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
August 1999, Journal of medical virology,
C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
June 2008, Acta crystallographica. Section D, Biological crystallography,
C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
December 2013, Toxicon : official journal of the International Society on Toxinology,
C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
June 2001, Zhonghua shi yan he lin chuang bing du xue za zhi = Zhonghua shiyan he linchuang bingduxue zazhi = Chinese journal of experimental and clinical virology,
C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
September 1992, Protein science : a publication of the Protein Society,
C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
December 1998, Biochemical and biophysical research communications,
C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
January 2011, Infection and immunity,
C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
October 1990, The Journal of biological chemistry,
C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
December 1998, Virology,
C de Carvalho Nicacio, and A Lundkvist, and K B Sjölander, and A Plyusnin, and E M Salonen, and E Björling
October 2008, Virology journal,
Copied contents to your clipboard!