Functional CB1 cannabinoid receptors in human vascular endothelial cells. 2000

J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
Department of Pharmacology & Toxicology, Medical College of Virginia of Virginia Commonwealth University, Richmond, VA 23298, USA.

Cannabinoid CB1 receptor mRNA was detected using reverse transcription-polymerase chain reaction (RT-PCR) in endothelial cells from human aorta and hepatic artery and in the ECV304 cell line derived from human umbilical vein endothelial cells. CB1 receptor-binding sites were detected by the high-affinity antagonist radioligand [(125)I]AM-251. In ECV304 cells, both the highly potent synthetic cannabinoid agonist HU-210 and the endogenous ligand anandamide induce activation of mitogen-activated protein (MAP) kinase, and the effect of HU-210 was completely blocked, whereas the effect of anandamide was partially inhibited by SR141716A, a selective CB1 receptor antagonist. Transfection of ECV304 cells with CB1 receptor antisense, but not sense, oligonucleotides caused the same pattern of inhibition as SR141716A. This provides more definitive evidence for the involvement of CB1 receptors in MAP kinase activation and suggests that anandamide may also activate MAP kinase via an additional, CB1 receptor-independent, SR141716A-resistant mechanism. The MAP kinase activation by anandamide in ECV304 cells requires genistein-sensitive tyrosine kinases and protein kinase C (PKC), and anandamide also activates p38 kinase and c-Jun kinase. These findings indicate that CB1 receptors located in human vascular endothelium are functionally coupled to the MAP kinase cascade. Activation of protein kinase cascades by anandamide may be involved in the modulation of endothelial cell growth and proliferation.

UI MeSH Term Description Entries
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011955 Receptors, Drug Proteins that bind specific drugs with high affinity and trigger intracellular changes influencing the behavior of cells. Drug receptors are generally thought to be receptors for some endogenous substance not otherwise specified. Drug Receptors,Drug Receptor,Receptor, Drug
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D043882 Receptors, Cannabinoid A class of G-protein-coupled receptors that are specific for CANNABINOIDS such as those derived from CANNABIS. They also bind a structurally distinct class of endogenous factors referred to as ENDOCANNABINOIDS. The receptor class may play a role in modulating the release of signaling molecules such as NEUROTRANSMITTERS and CYTOKINES. Cannabinoid Receptor,Cannabinoid Receptors,Receptor, Cannabinoid

Related Publications

J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
December 1998, British journal of pharmacology,
J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
October 1998, The Journal of pharmacology and experimental therapeutics,
J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
June 2012, The Journal of biological chemistry,
J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
May 2006, Journal of neuroscience research,
J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
August 2022, Scientific reports,
J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
January 2017, Methods in enzymology,
J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
May 2008, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society,
J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
June 2010, British journal of pharmacology,
J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
January 2003, European journal of pharmacology,
J Liu, and B Gao, and F Mirshahi, and A J Sanyal, and A D Khanolkar, and A Makriyannis, and G Kunos
February 2010, Biochemical pharmacology,
Copied contents to your clipboard!