Human vascular endothelial cells express functional nicotinic acetylcholine receptors. 1998

K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
Department of Biochemistry, University of Minnesota, St. Paul, Minnesota, USA.

ACh receptors sensitive to nicotine (nAChR) are present in human skin keratinocytes and in bronchial epithelial cells. They are stimulated by ACh secreted by the same cells that express them, and they modulate cell motility and shape. A variety of non-neuronal tissues, including endothelial cells, synthesize ACh, which raises the possibility that they are sensitive to nicotine. We demonstrate here that endothelial cells that line blood vessels express functional nAChRs. Their structure and ion-gating properties are similar to those of the nAChRs expressed by ganglionic neurons and by skin keratinocytes and bronchial epithelial cells. In situ hybridization experiments using primary cultures of endothelial cells from human aorta demonstrated the presence in these cells of the subunits believed to contribute to ganglionic ACh receptors (AChRs) of the alpha3 subtype: alpha3, alpha5, beta2 and beta4. Binding of radiolabeled epibatidine-a high-affinity specific ligand of certain neuronal AChRs, including the alpha3 subtypes-revealed the presence of approximately 900 specific binding sites per cell. We assessed the presence of functional AChRs by patch-clamp experiments. Cultured human endothelial cells express ion channels that are opened by (+)-anatoxin-a and are blocked by dihydro-beta-erythroidine. These are specific agonist and antagonist, respectively, of neuronal AChRs of the alpha3 subtype. The ion-gating properties of the endothelial AChRs were similar to those of neuronal ganglionic AChRs. The presence of AChRs sensitive to nicotine in endothelial cells may be related to the toxic effects of nicotine on the vascular system.

UI MeSH Term Description Entries
D011725 Pyridines Compounds with a six membered aromatic ring containing NITROGEN. The saturated version is PIPERIDINES.
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations

Related Publications

K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
December 2001, Molecular pharmacology,
K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
April 2011, Arteriosclerosis, thrombosis, and vascular biology,
K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
September 2005, American journal of physiology. Cell physiology,
K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
March 1999, Endocrinology,
K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
January 2022, PloS one,
K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
January 2014, PloS one,
K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
October 2008, Trends in cardiovascular medicine,
K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
August 2011, Biochemistry and cell biology = Biochimie et biologie cellulaire,
K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
July 2001, British journal of cancer,
K D Macklin, and A D Maus, and E F Pereira, and E X Albuquerque, and B M Conti-Fine
March 2000, The Biochemical journal,
Copied contents to your clipboard!