Induction of diabetes in nonobese diabetic mice by Th2 T cell clones from a TCR transgenic mouse. 2000

M Poulin, and K Haskins
Department of Immunology and Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center, Denver, CO 80262, USA.

We have produced a panel of cloned T cell lines from the BDC-2.5 TCR transgenic (Tg) mouse that exhibit a Th2 cytokine phenotype in vitro but are highly diabetogenic in vivo. Unlike an earlier report in which T cells obtained from the Tg mouse were cultured for 1 wk under Th2-promoting conditions and were found to induce disease only in NOD.scid recipients, we found that long-term T cell clones with a fixed Th2 cytokine profile can transfer disease only to young nonobese diabetic (NOD) mice and never to NOD.scid recipients. Furthermore, the mechanism by which diabetes is transferred by a Tg Th2 T cell clone differs from that of the original CD4+ Th1 BDC-2.5 T cell clone made in this laboratory. Whereas the BDC-2.5 clone rapidly causes disease in NOD.scid recipients less than 2 wk old, the Tg Th2 T cell clones can do so only when cotransferred with other diabetogenic T cells, suggesting that the Th2 T cell requires the presence of host T cells for initiation of disease.

UI MeSH Term Description Entries
D008822 Mice, Transgenic Laboratory mice that have been produced from a genetically manipulated EGG or EMBRYO, MAMMALIAN. Transgenic Mice,Founder Mice, Transgenic,Mouse, Founder, Transgenic,Mouse, Transgenic,Mice, Transgenic Founder,Transgenic Founder Mice,Transgenic Mouse
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D002999 Clone Cells A group of genetically identical cells all descended from a single common ancestral cell by mitosis in eukaryotes or by binary fission in prokaryotes. Clone cells also include populations of recombinant DNA molecules all carrying the same inserted sequence. (From King & Stansfield, Dictionary of Genetics, 4th ed) Clones,Cell, Clone,Cells, Clone,Clone,Clone Cell
D003922 Diabetes Mellitus, Type 1 A subtype of DIABETES MELLITUS that is characterized by INSULIN deficiency. It is manifested by the sudden onset of severe HYPERGLYCEMIA, rapid progression to DIABETIC KETOACIDOSIS, and DEATH unless treated with insulin. The disease may occur at any age, but is most common in childhood or adolescence. Diabetes Mellitus, Brittle,Diabetes Mellitus, Insulin-Dependent,Diabetes Mellitus, Juvenile-Onset,Diabetes Mellitus, Ketosis-Prone,Diabetes Mellitus, Sudden-Onset,Diabetes, Autoimmune,IDDM,Autoimmune Diabetes,Diabetes Mellitus, Insulin-Dependent, 1,Diabetes Mellitus, Type I,Insulin-Dependent Diabetes Mellitus 1,Juvenile-Onset Diabetes,Type 1 Diabetes,Type 1 Diabetes Mellitus,Brittle Diabetes Mellitus,Diabetes Mellitus, Insulin Dependent,Diabetes Mellitus, Juvenile Onset,Diabetes Mellitus, Ketosis Prone,Diabetes Mellitus, Sudden Onset,Diabetes, Juvenile-Onset,Diabetes, Type 1,Insulin Dependent Diabetes Mellitus 1,Insulin-Dependent Diabetes Mellitus,Juvenile Onset Diabetes,Juvenile-Onset Diabetes Mellitus,Ketosis-Prone Diabetes Mellitus,Sudden-Onset Diabetes Mellitus
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013045 Species Specificity The restriction of a characteristic behavior, anatomical structure or physical system, such as immune response; metabolic response, or gene or gene variant to the members of one species. It refers to that property which differentiates one species from another but it is also used for phylogenetic levels higher or lower than the species. Species Specificities,Specificities, Species,Specificity, Species
D013154 Spleen An encapsulated lymphatic organ through which venous blood filters.
D016513 Mice, SCID Mice homozygous for the mutant autosomal recessive gene "scid" which is located on the centromeric end of chromosome 16. These mice lack mature, functional lymphocytes and are thus highly susceptible to lethal opportunistic infections if not chronically treated with antibiotics. The lack of B- and T-cell immunity resembles severe combined immunodeficiency (SCID) syndrome in human infants. SCID mice are useful as animal models since they are receptive to implantation of a human immune system producing SCID-human (SCID-hu) hematochimeric mice. SCID Mice,SCID-hu Mice,Severe Combined Immunodeficient Mice,Immunodeficient Mice, Severe Combined,Mouse, SCID,Mouse, SCID-hu,Mice, SCID-hu,Mouse, SCID hu,SCID Mouse,SCID hu Mice,SCID-hu Mouse
D016688 Mice, Inbred NOD A strain of non-obese diabetic mice developed in Japan that has been widely studied as a model for T-cell-dependent autoimmune insulin-dependent diabetes mellitus in which insulitis is a major histopathologic feature, and in which genetic susceptibility is strongly MHC-linked. Non-Obese Diabetic Mice,Mice, NOD,Mouse, Inbred NOD,Mouse, NOD,Non-Obese Diabetic Mouse,Nonobese Diabetic Mice,Nonobese Diabetic Mouse,Diabetic Mice, Non-Obese,Diabetic Mice, Nonobese,Diabetic Mouse, Non-Obese,Diabetic Mouse, Nonobese,Inbred NOD Mice,Inbred NOD Mouse,Mice, Non-Obese Diabetic,Mice, Nonobese Diabetic,Mouse, Non-Obese Diabetic,Mouse, Nonobese Diabetic,NOD Mice,NOD Mice, Inbred,NOD Mouse,NOD Mouse, Inbred,Non Obese Diabetic Mice,Non Obese Diabetic Mouse

Related Publications

M Poulin, and K Haskins
January 1997, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
M Poulin, and K Haskins
October 1989, Proceedings of the National Academy of Sciences of the United States of America,
M Poulin, and K Haskins
September 1994, Journal of immunology (Baltimore, Md. : 1950),
M Poulin, and K Haskins
July 1991, Proceedings of the National Academy of Sciences of the United States of America,
M Poulin, and K Haskins
February 1993, Science (New York, N.Y.),
M Poulin, and K Haskins
May 2000, Journal of immunology (Baltimore, Md. : 1950),
M Poulin, and K Haskins
July 1995, The Journal of experimental medicine,
Copied contents to your clipboard!