The roles of proximal and distal muscles in anticipatory postural adjustments under asymmetrical perturbations and during standing on rollerskates. 2000

T Shiratori, and M Latash
Department of Kinesiology, Pennsylvania State University, University Park, PA 16802, USA.

OBJECTIVE The study addresses two controversial issues surrounding the nature of anticipatory postural adjustments (APAs). The first deals with the reproducible APA patterns in proximal postural muscles and variable APA patterns reported for the muscles controlling the ankle joint (TA-SOL). We hypothesized that the TA-SOL muscles participate mainly in the compensation of lateral and rotational perturbations, in particular those associated with asymmetrical movements. The second issue deals with decreased APAs reported during both very stable and unstable standing. We hypothesized that APA changes during unstable standing might depend on the actual mechanical nature of instability. METHODS Eight healthy subjects were recruited who had had no prior experience with rollerskates. They performed series of bilateral and unilateral, flexion and extension movements during regular standing and bilateral movements during standing on rollerskates. EMG changes and shifts of the center of pressure were analyzed within a time window typical of APAs. RESULTS We found that APAs in proximal muscles were decreased during unilateral shoulder movements as compared to APAs during bilateral movements but did not show right-left differences. In contrast, the distal muscles (TA-SOL) showed little involvement during bilateral movements, while a clear right-left asymmetry was seen during unilateral movements. Bilateral movements performed while standing on rollerskates were accompanied by unchanged APAs in the proximal muscle pairs and increased APAs in the TA-SOL pair. CONCLUSIONS We conclude that the proximal muscles provide a general pattern counteracting expected perturbations in the anterior-posterior direction while the distal muscles deal with asymmetrical perturbations and the modulation of APAs in unusual conditions such as standing on rollerskates. There seems to be no unambiguous relation between the magnitude of APAs and the stability of standing: Depending on the exact mechanical nature of postural instability, it could be associated with qualitatively different changes in the APAs.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D010865 Pilot Projects Small-scale tests of methods and procedures to be used on a larger scale if the pilot study demonstrates that these methods and procedures can work. Pilot Studies,Pilot Study,Pilot Project,Project, Pilot,Projects, Pilot,Studies, Pilot,Study, Pilot
D011187 Posture The position or physical attitude of the body. Postures
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D004856 Postural Balance A POSTURE in which an ideal body mass distribution is achieved. Postural balance provides the body carriage stability and conditions for normal functions in stationary position or in movement, such as sitting, standing, or walking. Postural Control,Posture Balance,Posture Control,Posture Equilibrium,Balance, Postural,Musculoskeletal Equilibrium,Postural Equilibrium,Balance, Posture,Control, Postural,Control, Posture,Equilibrium, Musculoskeletal,Equilibrium, Postural,Equilibrium, Posture,Postural Controls,Posture Balances,Posture Controls,Posture Equilibriums
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults

Related Publications

T Shiratori, and M Latash
February 2001, Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology,
T Shiratori, and M Latash
January 1997, Clinical biomechanics (Bristol, Avon),
T Shiratori, and M Latash
April 2004, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
T Shiratori, and M Latash
March 1995, Journal of neurology, neurosurgery, and psychiatry,
T Shiratori, and M Latash
June 1994, Electroencephalography and clinical neurophysiology,
T Shiratori, and M Latash
January 1987, Electroencephalography and clinical neurophysiology. Supplement,
T Shiratori, and M Latash
August 2013, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
T Shiratori, and M Latash
October 2022, Experimental brain research,
Copied contents to your clipboard!