Anticipatory postural adjustments associated with lateral and rotational perturbations during standing. 2001

A S Aruin, and T Ota, and M L Latash
Rehabilitation Foundation, Inc., Wheaton, IL 60189, USA. aaruin@uic.edu

We studied the role of different leg and trunk muscle groups in the generation of anticipatory postural adjustments (APAs) prior to lateral and rotational perturbations associated with predictable and self-triggered postural perturbations during standing. Postural perturbations were induced by a variety of manipulations including catching and releasing a load with the right hand extended either in front of the body or to the right side, performing bilateral fast shoulder movements in different directions, and applying brief force pulses with a hand against the wall. Perturbations in a frontal plane ("lateral perturbations") were associated with significant asymmetries in APAs seen in the right and left distal (soleus and tibialis anterior) muscles; these asymmetries dependent on the direction of the perturbation. Rotational perturbations about the vertical axis of the body generated by fast movements of the two shoulders in the opposite directions were also associated with direction-dependent asymmetries in the APAs in soleus muscles. However, rotational perturbations generated by an off-body-midline force pulse application were accompanied by direction-dependent asymmetries in proximal muscle groups, but not in the distal muscles. We conclude that muscles controlling the ankle joint play an important role in the compensation of lateral and rotational perturbations. The abundance of muscles participating in maintaining vertical posture allows the control system to use different task-dependent strategies during the generation of APAs in anticipation of rotational perturbation.

UI MeSH Term Description Entries
D008297 Male Males
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D011187 Posture The position or physical attitude of the body. Postures
D004576 Electromyography Recording of the changes in electric potential of muscle by means of surface or needle electrodes. Electromyogram,Surface Electromyography,Electromyograms,Electromyographies,Electromyographies, Surface,Electromyography, Surface,Surface Electromyographies
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D015444 Exercise Physical activity which is usually regular and done with the intention of improving or maintaining PHYSICAL FITNESS or HEALTH. Contrast with PHYSICAL EXERTION which is concerned largely with the physiologic and metabolic response to energy expenditure. Aerobic Exercise,Exercise, Aerobic,Exercise, Isometric,Exercise, Physical,Isometric Exercise,Physical Activity,Acute Exercise,Exercise Training,Activities, Physical,Activity, Physical,Acute Exercises,Aerobic Exercises,Exercise Trainings,Exercise, Acute,Exercises,Exercises, Acute,Exercises, Aerobic,Exercises, Isometric,Exercises, Physical,Isometric Exercises,Physical Activities,Physical Exercise,Physical Exercises,Training, Exercise,Trainings, Exercise
D016474 Weight-Bearing The physical state of supporting an applied load. This often refers to the weight-bearing bones or joints that support the body's weight, especially those in the spine, hip, knee, and foot. Load-Bearing,Axial Loading,Loadbearing,Weightbearing,Axial Loadings,Load Bearing,Weight Bearing
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

A S Aruin, and T Ota, and M L Latash
April 2004, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
A S Aruin, and T Ota, and M L Latash
August 2013, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
A S Aruin, and T Ota, and M L Latash
July 2001, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
A S Aruin, and T Ota, and M L Latash
January 1997, Clinical biomechanics (Bristol, Avon),
A S Aruin, and T Ota, and M L Latash
March 1995, Journal of neurology, neurosurgery, and psychiatry,
A S Aruin, and T Ota, and M L Latash
April 2000, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
A S Aruin, and T Ota, and M L Latash
February 2011, Journal of applied biomechanics,
A S Aruin, and T Ota, and M L Latash
March 2016, Experimental brain research,
Copied contents to your clipboard!