Voltage-gated calcium currents in axotomized adult rat cutaneous afferent neurons. 2000

M L Baccei, and J D Kocsis
Department of Neurology, Yale University School of Medicine, New Haven 06510, USA.

The effect of sciatic nerve injury on the somatic expression of voltage-gated calcium currents in adult rat cutaneous afferent dorsal root ganglion (DRG) neurons identified via retrograde Fluoro-gold labeling was studied using whole cell patch-clamp techniques. Two weeks after a unilateral ligation and transection of the sciatic nerve, the L(4)-L(5) DRG were dissociated and barium currents were recorded from cells 3-10 h later. Cutaneous afferents (35-50 microm diam) were classified as type 1 (possessing only high-voltage-activated currents; HVA) or type 2 (having both high- and low-voltage-activated currents). Axotomy did not change the percentage of neurons exhibiting a type 2 phenotype or the properties of low-threshold T-type current found in type 2 neurons. However, in type 1 neurons the peak density of HVA current available at a holding potential of -60 mV was reduced in axotomized neurons (83.9 +/- 5.6 pA/pF, n = 53) as compared with control cells (108.7 +/- 6.9 pA/pF, n = 58, P < 0.01, unpaired t-test). A similar reduction was observed at more negative holding potentials, suggesting differences in steady-state inactivation are not responsible for the effect. Separation of the type 1 cells into different size classes indicates that the reduction in voltage-gated barium current occurs selectively in the larger (capacitance >80 pF) cutaneous afferents (control: 112.4 +/- 10.6 pA/pF, n = 30; ligated: 72.6 +/- 5.0 pA/pF, n = 36; P < 0.001); no change was observed in cells with capacitances of 45-80 pF. Isolation of the N- and P¿Q-type components of the HVA current in the large neurons using omega-conotoxin GVIA and omega-agatoxin TK suggests a selective reduction in N-type barium current after nerve injury, as the density of omega-CgTx GVIA-sensitive current decreased from 56.9 +/- 6.6 pA/pF in control cells (n = 13) to 31.3 +/- 4.6 pA/pF in the ligated group (n = 12; P < 0.005). The HVA barium current of large cutaneous afferents also demonstrates a depolarizing shift in the voltage dependence of inactivation after axotomy. Injured type 1 cells exhibited faster inactivation kinetics than control neurons, although the rate of recovery from inactivation was similar in the two groups. The present results indicate that nerve injury leads to a reorganization of the HVA calcium current properties in a subset of cutaneous afferent neurons.

UI MeSH Term Description Entries
D009475 Neurons, Afferent Neurons which conduct NERVE IMPULSES to the CENTRAL NERVOUS SYSTEM. Afferent Neurons,Afferent Neuron,Neuron, Afferent
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D005260 Female Females
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.
D012867 Skin The outer covering of the body that protects it from the environment. It is composed of the DERMIS and the EPIDERMIS.
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats

Related Publications

M L Baccei, and J D Kocsis
January 2003, Neuroscience,
M L Baccei, and J D Kocsis
June 1996, Journal of neurophysiology,
M L Baccei, and J D Kocsis
February 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M L Baccei, and J D Kocsis
January 1992, Ion channels,
M L Baccei, and J D Kocsis
April 1988, The Journal of physiology,
M L Baccei, and J D Kocsis
October 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!