Characterization of pharmacologically identified voltage-gated calcium channel currents in acutely isolated rat neocortical neurons. I. Adult neurons. 1995

N M Lorenzon, and R C Foehring
Department of Anatomy & Neurobiology, University of Tennessee at Memphis 38163, USA.

1. Whole cell recordings were obtained from pyramidal neurons acutely dissociated from the sensorimotor cortex of adult rats. 2. Whole cell calcium channel currents were similar in appearance when elicited from holding potentials of -90 or -40 mV. With 5 mM Ba2+ as the charge carrier, currents began to activate at approximately -45 mV, peaked at approximately -10 mV, and had an apparent reversal potential of approximately +45 mV. Current amplitude and voltage dependence varied with the concentration and identity of the charge carrier (Ca2+ vs. Ba2+). Calcium channel currents were blocked completely by > 200 microM Cd2+ (IC50 approximately 3.5 microM). 3. We determined saturating doses for blockade of currents by nifedipine (Nif), omega-conotoxin GVIA (CgTx), and omega-agatoxin IVA (AgTx) in adult cells. We also tested the selectivity of these compounds by applying them in combination and in different orders. We found the three compounds to be highly, but not perfectly, specific. 4. L-type current was operationally defined as that blocked by 5 microM Nif, N-type current as that blocked by 1 microM CgTx, and P-type current as that blocked by 100 nM AgTx. In adult cells, each of these compounds blocked 30-35% of the current. When all three blockers were applied concurrently, approximately 80% of the current was blocked (20% of current was resistant to the 3 blockers). 5. Few biophysical differences were found between the pharmacologically defined current components in adult cells. The resistant current had a more rapid time-to-peak, inactivated more rapidly and completely, and activated at more negative potentials than the other three types.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009543 Nifedipine A potent vasodilator agent with calcium antagonistic action. It is a useful anti-anginal agent that also lowers blood pressure. Adalat,BAY-a-1040,Bay-1040,Cordipin,Cordipine,Corinfar,Fenigidin,Korinfar,Nifangin,Nifedipine Monohydrochloride,Nifedipine-GTIS,Procardia,Procardia XL,Vascard,BAY a 1040,BAYa1040,Bay 1040,Bay1040,Monohydrochloride, Nifedipine,Nifedipine GTIS
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D002120 Calcium Channel Agonists Agents that increase calcium influx into calcium channels of excitable tissues. This causes vasoconstriction in VASCULAR SMOOTH MUSCLE and/or CARDIAC MUSCLE cells as well as stimulation of insulin release from pancreatic islets. Therefore, tissue-selective calcium agonists have the potential to combat cardiac failure and endocrinological disorders. They have been used primarily in experimental studies in cell and tissue culture. Calcium Channel Activators,Calcium Channel Agonists, Exogenous,Calcium Channel Agonist,Exogenous Calcium Channel Agonists,Activators, Calcium Channel,Agonist, Calcium Channel,Agonists, Calcium Channel,Channel Activators, Calcium,Channel Agonist, Calcium,Channel Agonists, Calcium
D002121 Calcium Channel Blockers A class of drugs that act by selective inhibition of calcium influx through cellular membranes. Calcium Antagonists, Exogenous,Calcium Blockaders, Exogenous,Calcium Channel Antagonist,Calcium Channel Blocker,Calcium Channel Blocking Drug,Calcium Inhibitors, Exogenous,Channel Blockers, Calcium,Exogenous Calcium Blockader,Exogenous Calcium Inhibitor,Calcium Channel Antagonists,Calcium Channel Blocking Drugs,Exogenous Calcium Antagonists,Exogenous Calcium Blockaders,Exogenous Calcium Inhibitors,Antagonist, Calcium Channel,Antagonists, Calcium Channel,Antagonists, Exogenous Calcium,Blockader, Exogenous Calcium,Blocker, Calcium Channel,Blockers, Calcium Channel,Calcium Blockader, Exogenous,Calcium Inhibitor, Exogenous,Channel Antagonist, Calcium,Channel Blocker, Calcium,Inhibitor, Exogenous Calcium
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001464 Barium An element of the alkaline earth group of metals. It has an atomic symbol Ba, atomic number 56, and atomic weight 138. All of its acid-soluble salts are poisonous.

Related Publications

N M Lorenzon, and R C Foehring
May 1993, Journal of neurophysiology,
N M Lorenzon, and R C Foehring
April 2000, Journal of neurophysiology,
N M Lorenzon, and R C Foehring
July 1993, Journal of neurophysiology,
N M Lorenzon, and R C Foehring
February 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience,
N M Lorenzon, and R C Foehring
June 1996, Journal of neurophysiology,
N M Lorenzon, and R C Foehring
September 2001, Synapse (New York, N.Y.),
N M Lorenzon, and R C Foehring
May 1988, Pflugers Archiv : European journal of physiology,
Copied contents to your clipboard!