Fibroblast growth factor-16 is a growth factor for embryonic brown adipocytes. 2000

M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
Department of Genetic Biochemistry, Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto 606-8501, Japan.

In rat embryos, fibroblast growth factor (FGF)-16 is predominantly expressed in brown adipose tissue. To elucidate the role of FGF-16, we examined the expression of FGF-16 mRNA in rat embryonic brown adipose tissue at different developmental stages by Northern blotting analysis and in situ hybridization. FGF-16 mRNA was expressed abundantly in brown adipose tissue during embryonic day 17. 5, embryonic days 17.5-19.5, and thereafter at lower levels into the neonatal period. The expression profile of FGF-16 mRNA well corresponds to the proliferative profile of embryonic brown adipose tissue reported. We also examined the mitogenic activity of recombinant rat FGF-16 for primary brown adipocytes prepared from rat embryonic brown adipose tissue. FGF-16 showed significant mitogenic activity for primary brown adipocytes. The mitogenic activity was found to be exerted by binding and activating FGF receptor-4 in the brown adipose tissue. As a great induction of proliferation of rat brown adipose tissue during cold acclimation was reported, we also examined the expression of FGF-16 mRNA in the brown adipose tissue during cold acclimation by Northern blotting analysis. The expression of FGF-16 mRNA was not increased, but rather decreased. The expression profile of FGF-16 mRNA and the mitogenic activity of FGF-16 reported here indicate that FGF-16 is a unique growth factor involved in proliferation of embryonic brown adipose tissue.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D002001 Adipose Tissue, Brown A thermogenic form of adipose tissue composed of BROWN ADIPOCYTES. It is found in newborns of many species including humans, and in hibernating mammals. Brown fat is richly vascularized, innervated, and densely packed with MITOCHONDRIA which can generate heat directly from the stored lipids. Brown Fat,Hibernating Gland,Brown Adipose Tissue,Fat, Brown,Tissue, Brown Adipose
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003080 Cold Temperature An absence of warmth or heat or a temperature notably below an accustomed norm. Cold,Cold Temperatures,Temperature, Cold,Temperatures, Cold
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D000071256 Uncoupling Protein 1 A mitochondrial uncoupling protein that is expressed in BROWN ADIPOSE TISSUE. It is critical for NONSHIVERING THERMOGENESIS to prevent heat loss in NEONATES. BAT Uncoupling Protein,Brown Adipose Tissue Uncoupling Protein,Mitochondrial Brown Fat Uncoupling Protein 1,Mitochondrial Uncoupling Protein,SLC25A7 Protein,Solute Carrier Family 25 Member 7,Thermogenin,UCP1 Protein,Uncoupling Protein 1a,Uncoupling Protein, Mitochondrial Membrane,Uncoupling Protein, BAT,Uncoupling Protein, Mitochondrial
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
October 2018, Biochemical and biophysical research communications,
M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
January 2016, Metabolism: clinical and experimental,
M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
June 2023, International journal of molecular sciences,
M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
August 2007, The Journal of biological chemistry,
M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
January 1989, Progress in growth factor research,
M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
January 1996, Development (Cambridge, England),
M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
September 1999, Pharmacology,
M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
May 2007, Developmental dynamics : an official publication of the American Association of Anatomists,
M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
September 2008, Journal of animal science,
M Konishi, and T Mikami, and M Yamasaki, and A Miyake, and N Itoh
June 2004, The American journal of pathology,
Copied contents to your clipboard!