Loss of fibroblast growth factor receptors is necessary for terminal differentiation of embryonic limb muscle. 1996

N Itoh, and T Mima, and T Mikawa
Department of Cell Biology and Anatomy, Cornell University Medical College, New York, NY 10021, USA.

Early in embryogenesis, precursors of the limb musculature are generated in the somite, migrate to the limb buds and undergo terminal differentiation. Although myogenic differentiation in culture is affected by several growth factors including fibroblast growth factor (FGF), it remains uncertain whether migration and differentiation of myogenic cells in vivo are directly regulated by such growth factors. To investigate the roles of FGF signaling in the regulation of myogenesis both in the somite and the limb bud, mosaic chicken embryos were generated that consist of somitic cells carrying transgenes expressing one of the following: FGF1, FGF4, the FGF receptor type-1 (FGFR1) or its dominant negative mutant (delta FGFR1). Cells infected with virus producing FGF ligand migrated into the somatopleure without differentiating into myotomal muscle, but differentiated into muscle fibers when they arrived in the limb bud. In contrast, cells overexpressing FGFR1 migrated into the limb muscle mass but remained as undifferentiated myoblasts. Cells infected with the delta FGFR1-producing virus failed to migrate to the somatopleure but were capable of differentiating into myotomal muscle within the somites. These results suggest that the FGFR-mediated FGF signaling (1) blocks terminal differentiation of myogenic cells within the somite and (2) sustains myoblast migration to limb buds from the somite, and that (3) down-regulation of FGFRs or FGFR signaling is involved in mechanisms triggering terminal differentiation of the limb muscle mass during avian embryogenesis.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D005121 Extremities The farthest or outermost projections of the body, such as the HAND and FOOT. Limbs,Extremity,Limb
D005346 Fibroblast Growth Factors A family of small polypeptide growth factors that share several common features including a strong affinity for HEPARIN, and a central barrel-shaped core region of 140 amino acids that is highly homologous between family members. Although originally studied as proteins that stimulate the growth of fibroblasts this distinction is no longer a requirement for membership in the fibroblast growth factor family. DNA Synthesis Factor,Fibroblast Growth Factor,Fibroblast Growth Regulatory Factor,Growth Factor, Fibroblast,Growth Factors, Fibroblast
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012190 Retroviridae Family of RNA viruses that infects birds and mammals and encodes the enzyme reverse transcriptase. The family contains seven genera: DELTARETROVIRUS; LENTIVIRUS; RETROVIRUSES TYPE B, MAMMALIAN; ALPHARETROVIRUS; GAMMARETROVIRUS; RETROVIRUSES TYPE D; and SPUMAVIRUS. A key feature of retrovirus biology is the synthesis of a DNA copy of the genome which is integrated into cellular DNA. After integration it is sometimes not expressed but maintained in a latent state (PROVIRUSES). Leukemogenic Viruses,Leukoviruses,Oncornaviruses,Oncovirinae,Oncoviruses,Oncoviruses, Type C,RNA Tumor Viruses,Retroviruses,Type C Oncoviruses,C Oncovirus, Type,C Oncoviruses, Type,Leukemogenic Virus,Leukovirus,Oncornavirus,Oncovirus,Oncovirus, Type C,RNA Tumor Virus,Retrovirus,Tumor Virus, RNA,Tumor Viruses, RNA,Type C Oncovirus,Virus, Leukemogenic,Virus, RNA Tumor,Viruses, Leukemogenic,Viruses, RNA Tumor
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D017468 Receptors, Fibroblast Growth Factor Specific molecular sites or structures on cell membranes that react with FIBROBLAST GROWTH FACTORS (both the basic and acidic forms), their analogs, or their antagonists to elicit or to inhibit the specific response of the cell to these factors. These receptors frequently possess tyrosine kinase activity. FGF Receptor Complex,FGF Receptor Complexes,FGF Receptors,Fibroblast Growth Factor Receptors,Receptors, FGF,FGF Receptor,Fibroblast Growth Factor Receptor,Heparin-Binding Growth Factor Receptor,Heparin Binding Growth Factor Receptor,Receptor, FGF
D018482 Muscle, Skeletal A subtype of striated muscle, attached by TENDONS to the SKELETON. Skeletal muscles are innervated and their movement can be consciously controlled. They are also called voluntary muscles. Anterior Tibial Muscle,Gastrocnemius Muscle,Muscle, Voluntary,Plantaris Muscle,Skeletal Muscle,Soleus Muscle,Muscle, Anterior Tibial,Muscle, Gastrocnemius,Muscle, Plantaris,Muscle, Soleus,Muscles, Skeletal,Muscles, Voluntary,Skeletal Muscles,Tibial Muscle, Anterior,Voluntary Muscle,Voluntary Muscles

Related Publications

N Itoh, and T Mima, and T Mikawa
April 1990, The Journal of biological chemistry,
N Itoh, and T Mima, and T Mikawa
August 2007, The Journal of biological chemistry,
N Itoh, and T Mima, and T Mikawa
April 2000, The Journal of biological chemistry,
N Itoh, and T Mima, and T Mikawa
April 2010, American journal of respiratory and critical care medicine,
N Itoh, and T Mima, and T Mikawa
January 2017, PloS one,
N Itoh, and T Mima, and T Mikawa
October 2002, Development (Cambridge, England),
Copied contents to your clipboard!