Ontogeny and localization of TGF-beta type I receptor expression during lung development. 2000

Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA. zhaoyun@duke.edu

Transforming growth factor (TGF)-beta is a family of multifunctional cytokines controlling cell growth, differentiation, and extracellular matrix deposition in the lung. The biological effects of TGF-beta are mediated by type I (TbetaR-I) and II (TbetaR-II) receptors. Our previous studies show that the expression of TbetaR-II is highly regulated in a spatial and temporal fashion during lung development. In the present studies, we investigated the temporal-spatial pattern and cellular expression of TbetaR-I during lung development. The expression level of TbetaR-I mRNA in rat lung at different embryonic and postnatal stages was analyzed by Northern blotting. TbetaR-I mRNA was expressed in fetal rat lungs in early development and then decreased as development proceeded. The localization of TbetaR-I in fetal and postnatal rat lung tissues was investigated by using in situ hybridization performed with an antisense RNA probe. TbetaR-I mRNA was present in the mesenchyme and epithelium of gestational day 14 rat lungs. An intense TbetaR-I signal was observed in the epithelial lining of the developing bronchi. In gestational day 16 lungs, the expression of TbetaR-I mRNA was increased in the mesenchymal tissue. The epithelium in both the distal and proximal bronchioles showed a similar level of TbetaR-I expression. In postnatal lungs, TbetaR-I mRNA was detected in parenchymal tissues and blood vessels. We further studied the expression of TbetaR-I in cultured rat lung cells. TbetaR-I was expressed by cultured rat lung fibroblasts, microvascular endothelial cells, and alveolar epithelial cells. These studies demonstrate a differential regulation and localization of TbetaR-I that is different from that of TbetaR-II during lung development. TbetaR-I, TbetaR-II, and TGF-beta isoforms exhibit distinct but overlapping patterns of expression during lung development. This implies a distinct role for TbetaR-I in mediating TGF-beta signal transduction during lung development.

UI MeSH Term Description Entries
D008168 Lung Either of the pair of organs occupying the cavity of the thorax that effect the aeration of the blood. Lungs
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D005333 Fetus The unborn young of a viviparous mammal, in the postembryonic period, after the major structures have been outlined. In humans, the unborn young from the end of the eighth week after CONCEPTION until BIRTH, as distinguished from the earlier EMBRYO, MAMMALIAN. Fetal Structures,Fetal Tissue,Fetuses,Mummified Fetus,Retained Fetus,Fetal Structure,Fetal Tissues,Fetus, Mummified,Fetus, Retained,Structure, Fetal,Structures, Fetal,Tissue, Fetal,Tissues, Fetal
D000077293 Receptor, Transforming Growth Factor-beta Type I A transmembrane serine-threonine kinase that forms a heteromeric complex with TYPE II TGF-BETA RECEPTORS to bind TGF-BETA and regulate a variety of physiological and pathological processes including CELL CYCLE ARREST; CELL PROLIFERATION; CELL DIFFERENTIATION; WOUND HEALING; EXTRACELLULAR MATRIX production, immunosuppression and ONCOGENESIS. Activin Receptor-like Kinase 5,Receptor, TGF-beta Type I,Serine-Threonine-Protein Kinase Receptor R4,TGF-beta RPK,TGF-beta Receptor Protein Kinase,TGF-beta Type I Receptor,TGF-beta Type I Receptors,TGFBR1,TbetaR-I Kinase,Transforming Growth Factor beta Receptor I,Transforming Growth Factor, beta Receptor 1,Type I TGF-beta Receptor,Type I TGF-beta Receptors,Activin Receptor like Kinase 5,Kinase, TbetaR-I,Serine Threonine Protein Kinase Receptor R4,TGF beta Receptor Protein Kinase,TGF beta Type I Receptor,TGF beta Type I Receptors,TbetaR I Kinase,Type I TGF beta Receptor,Type I TGF beta Receptors
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
February 1995, The American journal of physiology,
Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
September 2006, Gene,
Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
January 1994, Cellular & molecular biology research,
Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
October 2008, Developmental biology,
Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
September 1998, The International journal of developmental biology,
Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
November 1991, The Journal of cell biology,
Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
March 1998, Kidney international,
Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
May 1993, Science (New York, N.Y.),
Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
September 1997, In vitro cellular & developmental biology. Animal,
Y Zhao, and S L Young, and J C McIntosh, and M P Steele, and R Silbajoris
June 1993, Proceedings of the National Academy of Sciences of the United States of America,
Copied contents to your clipboard!