Inhibition of the initiation of HIV-1 reverse transcription by 3'-azido-3'-deoxythymidine. Comparison with elongation. 2000

M Rigourd, and J M Lanchy, and S F Le Grice, and B Ehresmann, and C Ehresmann, and R Marquet
UPR 9002 du CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg cedex, France.

Initiation of human immunodeficiency virus-1 reverse transcription requires formation of a complex containing the viral RNA, primer tRNA(3)(Lys), and reverse transcriptase. Initiation, corresponding to addition of the first six nucleotides to tRNA(3)(Lys), is distinguished from elongation by its high specificity and low efficiency (processivity). Here, we compared the inhibition of initiation and elongation of reverse transcription by 3'-azido-3'-deoxythymidine 5'-triphosphate (AZTTP), the active form of 3'-azido-3'-deoxythymidine. We report the first detailed study of nucleotide binding, discrimination, and pyrophosphorolysis by the authentic initiation complex. We showed that the initiation and elongation complexes bound AZTTP and dTTP with the same affinity, while the polymerization rates were reduced by 148-160-fold during initiation. The pyrophosphorolysis rate of dTTP was reduced by the same extent, indicating that the polymerization equilibrium is the same in the two phases. The efficient unblocking of the 3'-azido-3'-deoxythymidine 5'-monophosphate (AZTMP)-terminated primer by pyrophosphorolysis significantly relieved inhibition of DNA synthesis during elongation in the presence of physiological pyrophosphate concentrations. Remarkably, although pyrophosphorolysis of dTMP and AZTMP were equally efficient during elongation, reverse transcriptase was almost totally unable to unblock the AZTMP-terminated primer during initiation. As a result, inhibition of reverse transcription by AZTTP was more efficient during initiation than elongation of reverse transcription, despite a reduced selectivity of incorporation.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008214 Lymphocytes White blood cells formed in the body's lymphoid tissue. The nucleus is round or ovoid with coarse, irregularly clumped chromatin while the cytoplasm is typically pale blue with azurophilic (if any) granules. Most lymphocytes can be classified as either T or B (with subpopulations of each), or NATURAL KILLER CELLS. Lymphoid Cells,Cell, Lymphoid,Cells, Lymphoid,Lymphocyte,Lymphoid Cell
D010441 Peptide Chain Elongation, Translational A process of GENETIC TRANSLATION, when an amino acid is transferred from its cognate TRANSFER RNA to the lengthening chain of PEPTIDES. Chain Elongation, Peptide, Translational,Protein Biosynthesis Elongation,Protein Chain Elongation, Translational,Protein Translation Elongation,Translation Elongation, Genetic,Translation Elongation, Protein,Translational Elongation, Protein,Translational Peptide Chain Elongation,Biosynthesis Elongation, Protein,Elongation, Genetic Translation,Elongation, Protein Biosynthesis,Elongation, Protein Translation,Elongation, Protein Translational,Genetic Translation Elongation,Protein Translational Elongation
D011756 Diphosphates Inorganic salts of phosphoric acid that contain two phosphate groups. Diphosphate,Pyrophosphate Analog,Pyrophosphates,Pyrophosphate Analogs,Analog, Pyrophosphate
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D006868 Hydrolysis The process of cleaving a chemical compound by the addition of a molecule of water.
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013942 Thymine Nucleotides Phosphate esters of THYMIDINE in N-glycosidic linkage with ribose or deoxyribose, as occurs in nucleic acids. (From Dorland, 28th ed, p1154) Thymidine Phosphates,Nucleotides, Thymine,Phosphates, Thymidine
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U

Related Publications

M Rigourd, and J M Lanchy, and S F Le Grice, and B Ehresmann, and C Ehresmann, and R Marquet
March 1987, Antiviral research,
M Rigourd, and J M Lanchy, and S F Le Grice, and B Ehresmann, and C Ehresmann, and R Marquet
June 1994, Biochemical and biophysical research communications,
M Rigourd, and J M Lanchy, and S F Le Grice, and B Ehresmann, and C Ehresmann, and R Marquet
January 2007, Proceedings of the National Academy of Sciences of the United States of America,
M Rigourd, and J M Lanchy, and S F Le Grice, and B Ehresmann, and C Ehresmann, and R Marquet
June 1989, Antimicrobial agents and chemotherapy,
M Rigourd, and J M Lanchy, and S F Le Grice, and B Ehresmann, and C Ehresmann, and R Marquet
August 2007, Virology,
M Rigourd, and J M Lanchy, and S F Le Grice, and B Ehresmann, and C Ehresmann, and R Marquet
November 1990, Virology,
M Rigourd, and J M Lanchy, and S F Le Grice, and B Ehresmann, and C Ehresmann, and R Marquet
August 1998, Proceedings of the National Academy of Sciences of the United States of America,
M Rigourd, and J M Lanchy, and S F Le Grice, and B Ehresmann, and C Ehresmann, and R Marquet
November 1988, Antimicrobial agents and chemotherapy,
Copied contents to your clipboard!