Quantitative ultrastructure of physiologically identified premotoneuron terminals in the trigeminal motor nucleus in the cat. 2000

Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
Department of Oral Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka 565-0871, Japan. sigenaga@dent.osaka-u.ac.jp

Little is known about the ultrastructure of synaptic boutons contacting trigeminal motoneurons. To address this issue, physiologically identified premotor neurons (n = 5) in the rostrodorsomedial part of the oral nucleus (Vo.r) were labeled by intracellular injections of horseradish peroxidase (HRP) in cats. The ultrastructure of 182 serially sectioned axon terminals from the five neurons was both qualitatively and quantitatively analyzed. In addition, the effects of the glycine antagonist strychnine, GABA(A) antagonist bicuculline, NMDA antagonist 2-amino-5-phosphonovalerate (APV), and non-NMDA antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) on Vo.r-induced postsynaptic potentials in trigeminal motoneurons (n = 11) were examined to evaluate potential signaling substances of the premotor neurons. Labeled boutons made synaptic contacts with either jaw-closing or -opening motoneurons. All the boutons contained pleomorphic vesicles, and most formed a single symmetric synapse either on the somata or on primary dendrites. Morphometric analyses indicated that bouton volume, bouton surface area, apposed surface area, total active zone area, and mitochondrial volume were not different between boutons on jaw-closing and -opening motoneurons. Vesicle number and density, however, were higher for boutons on jaw-closing motoneurons. The five morphological parameters were positively correlated with bouton volume. Vesicle density was the exception, which tending to be negatively correlated. Intravenous infusion of strychnine or bicuculline suppressed Vo.r-induced inhibitory postsynaptic potentials (IPSPs) in jaw-closing motoneurons. Abolition of Vo. r-induced excitatory postsynaptic potentials in jaw-opening motoneurons with APV and CNQX unmasked IPSPs. The present results suggest that premotor neurons in the Vo.r are inhibitory and that positive correlations between the ultrastructural parameters associated with synaptic release and bouton size are applicable to the interneurons, as they are in primary afferents.

UI MeSH Term Description Entries
D008410 Masticatory Muscles Muscles arising in the zygomatic arch that close the jaw. Their nerve supply is masseteric from the mandibular division of the trigeminal nerve. (From Stedman, 25th ed) Masticatory Muscle,Muscle, Masticatory,Muscles, Masticatory
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D009433 Neural Inhibition The function of opposing or restraining the excitation of neurons or their target excitable cells. Inhibition, Neural
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D013331 Strychnine An alkaloid found in the seeds of STRYCHNOS NUX-VOMICA. It is a competitive antagonist at glycine receptors and thus a convulsant. It has been used as an analeptic, in the treatment of nonketotic hyperglycinemia and sleep apnea, and as a rat poison. Strychnine Nitrate,Nitrate, Strychnine
D014278 Trigeminal Nuclei Nuclei of the trigeminal nerve situated in the brain stem. They include the nucleus of the spinal trigeminal tract (TRIGEMINAL NUCLEUS, SPINAL), the principal sensory nucleus, the mesencephalic nucleus, and the motor nucleus. Trigeminal Nuclear Complex,Nuclear Complex, Trigeminal,Nuclear Complices, Trigeminal,Nuclei, Trigeminal,Nucleus, Trigeminal,Trigeminal Nuclear Complices,Trigeminal Nucleus
D015388 Organelles Specific particles of membrane-bound organized living substances present in eukaryotic cells, such as the MITOCHONDRIA; the GOLGI APPARATUS; ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Organelle

Related Publications

Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
March 2001, Experimental brain research,
Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
December 1997, The Journal of comparative neurology,
Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
January 1980, Experimental brain research,
Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
February 1988, Acta medica Okayama,
Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
January 1984, Neuroscience letters,
Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
January 1958, The Anatomical record,
Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
September 2003, The Journal of comparative neurology,
Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
September 1982, Journal of neurophysiology,
Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
September 1988, Brain research,
Y Shigenaga, and Y Hirose, and A Yoshida, and H Fukami, and S Honma, and Y C Bae
September 1999, Synapse (New York, N.Y.),
Copied contents to your clipboard!