Ultrastructure of degenerating cerebellothalamic terminals in the ventral medial nucleus of the cat. 1980

K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith

Terminal degeneration of cerebellar afferents in the ventral medial thalamic nucleus (VM) was studied in cats at the ultrastructural level after uni- or bilateral lesions in the brachium conjunctivum (BC). To achieve discrete lesions within the BC, a new very accurate stereotaxic technique was used. Numerous large terminals belonging to a population of so-called LR boutons were observed degenerating in the VM. The boutons displayed a wide variety of degenerative changes. Some revealed the features of the classical neurofilamentous type of degeneration. Others, although containing a slightly increased number of neurofilaments, featured much more prominently large numbers of coated vesicle shells and heavy accumulations of a flocculent electron-dense material. Degeneration in a third group of boutons similar to some extent to the light type of degeneration was characterized by tight clumping of enormously swollen or distorted synaptic vesicles within a light matrix. At later stages, however, all these boutons were believed to become shrunken and electron-dense since intermediate stages between the light- and dark-appearing boutons were observed. The degenerating cerebellar boutons formed asymmetrical synaptic contacts. Groups of 3 or 4 boutons terminated upon dendrites of projection neurons synapsing more frequently on spines than on dendritic stems. The synaptic contacts between cerebellar boutons and the vesicle-containing dendrites of local circuit neurons were encountered as often if not more than the contacts on projection neuron dendrites. Triads consisting of cerebellar boutons and dendrites of both types of neurons were observed very regularly. This synaptic arrangement provides the anatomical basis for the modification of cerebellar input in the VM by interneurons.

UI MeSH Term Description Entries
D008297 Male Males
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D002415 Cats The domestic cat, Felis catus, of the carnivore family FELIDAE, comprising over 30 different breeds. The domestic cat is descended primarily from the wild cat of Africa and extreme southwestern Asia. Though probably present in towns in Palestine as long ago as 7000 years, actual domestication occurred in Egypt about 4000 years ago. (From Walker's Mammals of the World, 6th ed, p801) Felis catus,Felis domesticus,Domestic Cats,Felis domestica,Felis sylvestris catus,Cat,Cat, Domestic,Cats, Domestic,Domestic Cat
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D003599 Cytoskeleton The network of filaments, tubules, and interconnecting filamentous bridges which give shape, structure, and organization to the cytoplasm. Cytoplasmic Filaments,Cytoskeletal Filaments,Microtrabecular Lattice,Cytoplasmic Filament,Cytoskeletal Filament,Cytoskeletons,Filament, Cytoplasmic,Filament, Cytoskeletal,Filaments, Cytoplasmic,Filaments, Cytoskeletal,Lattice, Microtrabecular,Lattices, Microtrabecular,Microtrabecular Lattices
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D004292 Dominance, Cerebral Dominance of one cerebral hemisphere over the other in cerebral functions. Cerebral Dominance,Hemispheric Specialization,Dominances, Cerebral,Specialization, Hemispheric

Related Publications

K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
February 1988, Acta medica Okayama,
K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
September 2003, The Journal of comparative neurology,
K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
January 1985, Journal of neurophysiology,
K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
March 1978, Experimental brain research,
K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
December 1989, Brain research,
K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
October 2000, The Journal of comparative neurology,
K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
September 1999, Synapse (New York, N.Y.),
K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
November 1967, Experimental neurology,
K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
January 1992, Acta neurobiologiae experimentalis,
K Kultas-Ilinsky, and I A Ilinsky, and P A Young, and K R Smith
November 2000, The Journal of comparative neurology,
Copied contents to your clipboard!