Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae. 1975

H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster

A Saccharomyces cerevisiae mutant strain unable to grow at 38 C and bearing a modified methionyl-transfer ribonucleic acid (tRNA) synthetase has been studied. It has been shown that, in this mutant, the percentage of tRNAmet charged in vivo paralleled the degree of repressibility of methionine biosynthetic enzymes by exogenous methionine. On the contrary, the repression mediated by exogenous S-adenosylmethionine does not correlate with complete acylation of tRNAmet. Althought McLaughlin and Hartwell reported previously that the thermosensitivity and the defect in the methionyl-tRNA synthetase were due to the same genetic lesion (1969), no diffenence could be found in the methionyl-tRNA synthetase activity or in the pattern of repressibility of methionine biosynthetic pathway after growth at the premissive and at a semipermissive temperature. It appears that the mutant also exhibits some other modified characters that render unlikely the existence of only one genetic lesion in this strain. A genetic study of this mutant was undertaken which led to the conclusion that the thermosensitivity and the other defects are not related to the methionyl-tRNA synthetase modification. It was shown that the modified repressibility of methionine biosynthetic enzymes by methionine and the lack of acylation of tRNAmet in vivo follow the methionyl-tRNA synthetase modification. These results are in favor of the idea that methionyl-tRNAmet, more likely than methionine, is implicated in the regulation of the biosynthesis of methionine.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008718 Methionine-tRNA Ligase An enzyme that activates methionine with its specific transfer RNA. EC 6.1.1.10. Methionyl T RNA Synthetase,Met-tRNA Ligase,Methionyl-tRNA Synthetase,Ligase, Met-tRNA,Ligase, Methionine-tRNA,Met tRNA Ligase,Methionine tRNA Ligase,Methionyl tRNA Synthetase,Synthetase, Methionyl-tRNA
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D004794 Enzyme Repression The interference in synthesis of an enzyme due to the elevated level of an effector substance, usually a metabolite, whose presence would cause depression of the gene responsible for enzyme synthesis. Repression, Enzyme
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D012329 RNA, Bacterial Ribonucleic acid in bacteria having regulatory and catalytic roles as well as involvement in protein synthesis. Bacterial RNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer

Related Publications

H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster
August 1977, The Biochemical journal,
H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster
April 1977, Journal of bacteriology,
H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster
May 1969, Journal of bacteriology,
H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster
January 1975, Biochemical Society transactions,
H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster
April 1970, The Biochemical journal,
H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster
September 2006, Biochimica et biophysica acta,
H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster
August 1975, Journal of bacteriology,
H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster
November 1969, Journal of bacteriology,
H Cherest, and Y Surdin-Kerjan, and H De Robichon-Szulmajster
December 2019, Biotechnology and bioengineering,
Copied contents to your clipboard!