Methionyl-transfer ribonucleic acid deficiency during G1 arrest of Saccharomyces cerevisiae. 1977

M W Unger

The mesl- mutants of Saccharomyces cerevisiae cease division and accumulate in the G1 interval of the cell cycle when deprived of methionine or shifted from 23 to 36 degrees C in the presence of methionine. Synchronous cell cycle arrest results from a deficiency of charged methionyl-transfer ribonucleic acid (methionyl-tRNAMet) as shown by direct measurement of the in vivo pools of methionine, S-adenosylmethionine, and methionyl-tRNAMet. The deficiency of methionyl-tRNAMet in these cells is the consequence of a lesion in a single gene, mes1. mes1 appears to be the structural gene for the methionyl-tRNA synthetase because some revertants of this mutation exhibited a thermolabile methionyl-tRNA synthetase in vitro. A sufficient hypothesis to explain these and previous results is that the control of cell division by S. cerevisiae in response to nutrient limitation is mediated through aminoacyl-tRNA or subsequent steps in protein biosynthesis.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D008718 Methionine-tRNA Ligase An enzyme that activates methionine with its specific transfer RNA. EC 6.1.1.10. Methionyl T RNA Synthetase,Met-tRNA Ligase,Methionyl-tRNA Synthetase,Ligase, Met-tRNA,Ligase, Methionine-tRNA,Met tRNA Ligase,Methionine tRNA Ligase,Methionyl tRNA Synthetase,Synthetase, Methionyl-tRNA
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003433 Crosses, Genetic Deliberate breeding of two different individuals that results in offspring that carry part of the genetic material of each parent. The parent organisms must be genetically compatible and may be from different varieties or closely related species. Cross, Genetic,Genetic Cross,Genetic Crosses
D005796 Genes A category of nucleic acid sequences that function as units of heredity and which code for the basic instructions for the development, reproduction, and maintenance of organisms. Cistron,Gene,Genetic Materials,Cistrons,Genetic Material,Material, Genetic,Materials, Genetic
D000604 Amino Acyl-tRNA Synthetases A subclass of enzymes that aminoacylate AMINO ACID-SPECIFIC TRANSFER RNA with their corresponding AMINO ACIDS. Amino Acyl T RNA Synthetases,Amino Acyl-tRNA Ligases,Aminoacyl Transfer RNA Synthetase,Aminoacyl-tRNA Synthetase,Transfer RNA Synthetase,tRNA Synthetase,Acyl-tRNA Ligases, Amino,Acyl-tRNA Synthetases, Amino,Amino Acyl tRNA Ligases,Amino Acyl tRNA Synthetases,Aminoacyl tRNA Synthetase,Ligases, Amino Acyl-tRNA,RNA Synthetase, Transfer,Synthetase, Aminoacyl-tRNA,Synthetase, Transfer RNA,Synthetase, tRNA,Synthetases, Amino Acyl-tRNA
D012343 RNA, Transfer The small RNA molecules, 73-80 nucleotides long, that function during translation (TRANSLATION, GENETIC) to align AMINO ACIDS at the RIBOSOMES in a sequence determined by the mRNA (RNA, MESSENGER). There are about 30 different transfer RNAs. Each recognizes a specific CODON set on the mRNA through its own ANTICODON and as aminoacyl tRNAs (RNA, TRANSFER, AMINO ACYL), each carries a specific amino acid to the ribosome to add to the elongating peptide chains. Suppressor Transfer RNA,Transfer RNA,tRNA,RNA, Transfer, Suppressor,Transfer RNA, Suppressor,RNA, Suppressor Transfer
D012436 S-Adenosylmethionine Physiologic methyl radical donor involved in enzymatic transmethylation reactions and present in all living organisms. It possesses anti-inflammatory activity and has been used in treatment of chronic liver disease. (From Merck, 11th ed) AdoMet,Ademetionine,FO-1561,Gumbaral,S Amet,S-Adenosyl-L-Methionine,S-Adenosylmethionine Sulfate Tosylate,SAM-e,Samyr,FO 1561,FO1561,S Adenosyl L Methionine,S Adenosylmethionine,S Adenosylmethionine Sulfate Tosylate

Related Publications

M W Unger
November 1969, Journal of bacteriology,
M W Unger
October 1979, Molecular & general genetics : MGG,
M W Unger
April 1970, The Biochemical journal,
Copied contents to your clipboard!