Cytotoxicity of trichloroethylene and S-(1, 2-dichlorovinyl)-L-cysteine in primary cultures of rat renal proximal tubular and distal tubular cells. 2000

B S Cummings, and R C Zangar, and R F Novak, and L H Lash
Department of Pharmacology, Wayne State University School of Medicine, 540 East Canfield Avenue, 48201, Detroit, MI, USA.

Activities of several glutathione-dependent enzymes, expression of cytochrome P450 isoenzymes, and time- and concentration-dependent cytotoxicity of trichloroethylene (TRI) and S-(1, 2-dichlorovinyl)-L-cysteine (DCVC) were evaluated in primary cultures of proximal tubular (PT) and distal tubular (DT) cells from rat kidney. These cells exhibited cytokeratin staining and maintained activities of all glutathione-dependent enzymes measured. Of the cytochrome P450 isoenzymes studied, only CYP4A expression was detected. CYP4A mRNA and protein expression were higher in primary cultures of DT cells than in PT cells and were increased in DT cells by ciprofibrate treatment. Incubation of cells for 6 h with concentrations of TRI as high as 10 mM resulted in minimal cytotoxicity, as determined by release of lactate dehydrogenase (LDH). In contrast, marked cytotoxicity resulted from incubation of PT or DT cells with DCVC. Addition to cultures of TRI (2-10 mM) for 24 or 72 h resulted in modest, but significant time- and concentration-dependent increases in LDH release. Treatment of cells with DCVC (0.1-1 mM) for 24 h caused significant increases in LDH release and alterations in cellular protein and DNA content. Finally, exposure of primary cultures to TRI or DCVC for 72 h followed by 3 h of recovery caused a slight increase in the expression of vimentin, consistent with cellular regeneration. These studies demonstrate the utility of the primary renal cell cultures for the study of CYP4A expression and mechanisms of TRI-induced cellular injury.

UI MeSH Term Description Entries
D007527 Isoenzymes Structurally related forms of an enzyme. Each isoenzyme has the same mechanism and classification, but differs in its chemical, physical, or immunological characteristics. Alloenzyme,Allozyme,Isoenzyme,Isozyme,Isozymes,Alloenzymes,Allozymes
D007633 Keratins A class of fibrous proteins or scleroproteins that represents the principal constituent of EPIDERMIS; HAIR; NAILS; horny tissues, and the organic matrix of tooth ENAMEL. Two major conformational groups have been characterized, alpha-keratin, whose peptide backbone forms a coiled-coil alpha helical structure consisting of TYPE I KERATIN and a TYPE II KERATIN, and beta-keratin, whose backbone forms a zigzag or pleated sheet structure. alpha-Keratins have been classified into at least 20 subtypes. In addition multiple isoforms of subtypes have been found which may be due to GENE DUPLICATION. Cytokeratin,Keratin Associated Protein,Keratin,Keratin-Associated Proteins,alpha-Keratin,Associated Protein, Keratin,Keratin Associated Proteins,Protein, Keratin Associated,alpha Keratin
D007686 Kidney Tubules, Distal The portion of renal tubule that begins from the enlarged segment of the ascending limb of the LOOP OF HENLE. It reenters the KIDNEY CORTEX and forms the convoluted segments of the distal tubule. Distal Kidney Tubule,Distal Renal Tubule,Distal Kidney Tubules,Distal Renal Tubules,Kidney Tubule, Distal,Renal Tubule, Distal,Renal Tubules, Distal,Tubule, Distal Kidney,Tubule, Distal Renal,Tubules, Distal Kidney,Tubules, Distal Renal
D007687 Kidney Tubules, Proximal The renal tubule portion that extends from the BOWMAN CAPSULE in the KIDNEY CORTEX into the KIDNEY MEDULLA. The proximal tubule consists of a convoluted proximal segment in the cortex, and a distal straight segment descending into the medulla where it forms the U-shaped LOOP OF HENLE. Proximal Kidney Tubule,Proximal Renal Tubule,Kidney Tubule, Proximal,Proximal Kidney Tubules,Proximal Renal Tubules,Renal Tubule, Proximal,Renal Tubules, Proximal,Tubule, Proximal Kidney,Tubule, Proximal Renal,Tubules, Proximal Kidney,Tubules, Proximal Renal
D007770 L-Lactate Dehydrogenase A tetrameric enzyme that, along with the coenzyme NAD+, catalyzes the interconversion of LACTATE and PYRUVATE. In vertebrates, genes for three different subunits (LDH-A, LDH-B and LDH-C) exist. Lactate Dehydrogenase,Dehydrogenase, L-Lactate,Dehydrogenase, Lactate,L Lactate Dehydrogenase
D008297 Male Males
D011916 Rats, Inbred F344 An inbred strain of rat that is used for general BIOMEDICAL RESEARCH purposes. Fischer Rats,Rats, Inbred CDF,Rats, Inbred Fischer 344,Rats, F344,Rats, Inbred Fisher 344,CDF Rat, Inbred,CDF Rats, Inbred,F344 Rat,F344 Rat, Inbred,F344 Rats,F344 Rats, Inbred,Inbred CDF Rat,Inbred CDF Rats,Inbred F344 Rat,Inbred F344 Rats,Rat, F344,Rat, Inbred CDF,Rat, Inbred F344,Rats, Fischer
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003545 Cysteine A thiol-containing non-essential amino acid that is oxidized to form CYSTINE. Cysteine Hydrochloride,Half-Cystine,L-Cysteine,Zinc Cysteinate,Half Cystine,L Cysteine
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450

Related Publications

B S Cummings, and R C Zangar, and R F Novak, and L H Lash
June 2003, The Journal of pharmacology and experimental therapeutics,
B S Cummings, and R C Zangar, and R F Novak, and L H Lash
February 2000, Toxicological sciences : an official journal of the Society of Toxicology,
B S Cummings, and R C Zangar, and R F Novak, and L H Lash
November 2001, Toxicology and applied pharmacology,
B S Cummings, and R C Zangar, and R F Novak, and L H Lash
October 1986, The Journal of biological chemistry,
B S Cummings, and R C Zangar, and R F Novak, and L H Lash
July 2007, The Journal of pharmacology and experimental therapeutics,
B S Cummings, and R C Zangar, and R F Novak, and L H Lash
August 1989, Toxicology and applied pharmacology,
B S Cummings, and R C Zangar, and R F Novak, and L H Lash
April 1996, Toxicology and applied pharmacology,
B S Cummings, and R C Zangar, and R F Novak, and L H Lash
April 2003, Toxicology and applied pharmacology,
B S Cummings, and R C Zangar, and R F Novak, and L H Lash
July 2003, Archives of toxicology,
Copied contents to your clipboard!