Mixed chimerism, heart, and skin allograft tolerance in cyclophosphamide-induced tolerance. 2000

Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
Department of Cardiovascular Surgery, Faculty of Medicine, Kyushu University, Fukuoka, Japan.

We elucidated the possible role of chimerism in skin and heart allograft tolerance using cyclophosphamide (CP)-induced tolerance. When C3H (H-2k; Thy1.2, Mls-1b) mice were i.v. primed with 1x10(8) spleen cells (SC) from H-2 matched AKR (H-2k; Thy1.1, Mls-1a) mice and then treated i.p. with 200 mg/kg of CP, the survivals of both AKR skin grafts and heart grafts (HG) were permanently prolonged in a tolerogen-specific fashion. After this treatment, a minimal degree of mixed chimerism, the clonal destruction of Mls-1a-reactive CD4+Vbeta6+ T cells in the periphery, and the clonal deletion of Vbeta6+ thymocytes were all observed. When AKR SC and 100 mg/kg CP were used for conditioning, the AKR HG were permanently accepted, but the survival of the AKR skin grafts was only mildly prolonged. The clonal destruction of CD4+Vbeta6+ T cells in the periphery and the intrathymic clonal deletion of Vbeta6+ thymocytes were induced in both the SC and the 100 mg/kg CP-treated C3H mice. A minimal degree of mixed chimerism was detectable at 4 and 12 weeks after AKR SC and 100 mg/kg CP treatment, and still did not disappear at 40 weeks. The degree of mixed chimerism induced with SC and 100 mg/kg CP was significantly lower than that with SC and 200 mg/kg CP during the observation. No posttransplant cardiac allograft vasculopathy (CAV) was observed to develop, while both the Th1 type (interferon-gamma) and Th2 type (interleukin-4 and -10) cytokine expressions decreased in the AKR HG of the tolerant C3H mice treated with both AKR SC plus 200 mg/kg CP, and AKR SC plus 100 mg/kg CP. A second set of skin grafts from donor AKR mice survived for more than 100 days in a tolerogen-specific fashion in all C3H mice treated with AKR SC and 200 mg/kg CP and also accepted the AKR HG for over 200 days, while 80% of the C3H mice treated with AKR SC and 100 mg/kg CP and accepted the AKR HG for more than 200 days. These results strongly suggested the following conclusions: 1) the degree of chimerism can strongly influence the induction of skin and heart allograft tolerance, 2) posttransplant CAV does not develop in the donor HG maintained by chimerism-based CP-induced tolerance, 3) the mRNA expression of both Th1 and Th2 type cytokine decreased in the donor HG maintained by chimerism-based CP-induced tolerance, and 4) the induction of skin allograft tolerance is more difficult than the prevention of posttransplant CAV.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D008806 Mice, Inbred AKR An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. Mice, AKR,Mouse, AKR,Mouse, Inbred AKR,AKR Mice,AKR Mice, Inbred,AKR Mouse,AKR Mouse, Inbred,Inbred AKR Mice,Inbred AKR Mouse
D008809 Mice, Inbred C3H An inbred strain of mouse that is used as a general purpose strain in a wide variety of RESEARCH areas including CANCER; INFECTIOUS DISEASES; sensorineural, and cardiovascular biology research. Mice, C3H,Mouse, C3H,Mouse, Inbred C3H,C3H Mice,C3H Mice, Inbred,C3H Mouse,C3H Mouse, Inbred,Inbred C3H Mice,Inbred C3H Mouse
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D003520 Cyclophosphamide Precursor of an alkylating nitrogen mustard antineoplastic and immunosuppressive agent that must be activated in the LIVER to form the active aldophosphamide. It has been used in the treatment of LYMPHOMA and LEUKEMIA. Its side effect, ALOPECIA, has been used for defleecing sheep. Cyclophosphamide may also cause sterility, birth defects, mutations, and cancer. (+,-)-2-(bis(2-Chloroethyl)amino)tetrahydro-2H-1,3,2-oxazaphosphorine 2-Oxide Monohydrate,B-518,Cyclophosphamide Anhydrous,Cyclophosphamide Monohydrate,Cyclophosphamide, (R)-Isomer,Cyclophosphamide, (S)-Isomer,Cyclophosphane,Cytophosphan,Cytophosphane,Cytoxan,Endoxan,NSC-26271,Neosar,Procytox,Sendoxan,B 518,B518,NSC 26271,NSC26271
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000917 Antibody Formation The production of ANTIBODIES by proliferating and differentiated B-LYMPHOCYTES under stimulation by ANTIGENS. Antibody Production,Antibody Response,Antibody Responses,Formation, Antibody,Production, Antibody,Response, Antibody,Responses, Antibody
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
September 1990, European journal of immunology,
Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
April 2015, Chimerism,
Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
July 2016, JCI insight,
Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
January 1990, Journal of immunology (Baltimore, Md. : 1950),
Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
June 1991, Immunobiology,
Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
November 2009, Scandinavian journal of immunology,
Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
January 1995, Transplantation,
Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
October 1992, Journal of immunology (Baltimore, Md. : 1950),
Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
August 2001, The Journal of heart and lung transplantation : the official publication of the International Society for Heart Transplantation,
Q W Zhang, and Y Tomita, and G Matsuzaki, and M Yoshikawa, and I Shimizu, and Y Nakashima, and K Sueishi, and K Nomoto, and H Yasui
January 2001, Transplantation proceedings,
Copied contents to your clipboard!