Transient mixed chimerism for allograft tolerance. 2015

Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
a Department of Surgery , Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School , Boston , MA , USA.

Mixed chimerism discovered in Freemartin cattle by Ray Owen 70 years ago paved the way for research on immune tolerance. Since his discovery, significant progress has been made in the effort to induce allograft tolerance via mixed chimerism in various murine models. However, induction of persistent mixed chimerism has proved to be extremely difficult in major histocompatibility complex mismatched humans. Chimerism induced in humans tends to either disappear or convert to full donor chimerism, depending on the intensity of the conditioning regimen. Nevertheless, our studies in both NHPs and humans have clearly demonstrated that renal allograft tolerance can be induced by transient mixed chimerism. Our studies have shown that solid organ allograft tolerance via transient mixed chimerism 1) requires induction of multilineage hematologic chimerism, 2) depends on peripheral regulatory mechanisms, rather than thymic deletion, for long-term maintenance, 3) is organ specific (kidney and lung but not heart allograft tolerance are feasible). A major advantage of tolerance induction via transient mixed chimerism is exclusion of the risk of graft-versus-host disease. Our ongoing studies are directed toward improving the consistency of tolerance induction, reducing the morbidity of the conditioning regimen, substituting clinically available agents, such as Belatacept for the now unavailable anti-CD2 monoclonal antibody, and extending the protocol to recipients of deceased donor allografts.

UI MeSH Term Description Entries
D007108 Immune Tolerance The specific failure of a normally responsive individual to make an immune response to a known antigen. It results from previous contact with the antigen by an immunologically immature individual (fetus or neonate) or by an adult exposed to extreme high-dose or low-dose antigen, or by exposure to radiation, antimetabolites, antilymphocytic serum, etc. Immunosuppression (Physiology),Immunosuppressions (Physiology),Tolerance, Immune
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014181 Transplantation Immunology A general term for the complex phenomena involved in allo- and xenograft rejection by a host and graft vs host reaction. Although the reactions involved in transplantation immunology are primarily thymus-dependent phenomena of cellular immunity, humoral factors also play a part in late rejection. Immunology, Transplantation
D016026 Bone Marrow Transplantation The transference of BONE MARROW from one human or animal to another for a variety of purposes including HEMATOPOIETIC STEM CELL TRANSPLANTATION or MESENCHYMAL STEM CELL TRANSPLANTATION. Bone Marrow Cell Transplantation,Grafting, Bone Marrow,Transplantation, Bone Marrow,Transplantation, Bone Marrow Cell,Bone Marrow Grafting
D016377 Organ Transplantation Transference of an organ between individuals of the same species or between individuals of different species. Grafting, Organ,Transplantation, Organ,Graftings, Organ,Organ Grafting,Organ Graftings,Organ Transplantations,Transplantations, Organ
D046528 Chimerism The occurrence in an individual of two or more cell populations of different chromosomal constitutions, derived from different individuals. This contrasts with MOSAICISM in which the different cell populations are derived from a single individual. Microchimerism
D049673 History, 20th Century Time period from 1901 through 2000 of the common era. 20th Century History,20th Cent. History (Medicine),20th Cent. History of Medicine,20th Cent. Medicine,Historical Events, 20th Century,History of Medicine, 20th Cent.,History, Twentieth Century,Medical History, 20th Cent.,Medicine, 20th Cent.,20th Cent. Histories (Medicine),20th Century Histories,Cent. Histories, 20th (Medicine),Cent. History, 20th (Medicine),Century Histories, 20th,Century Histories, Twentieth,Century History, 20th,Century History, Twentieth,Histories, 20th Cent. (Medicine),Histories, 20th Century,Histories, Twentieth Century,History, 20th Cent. (Medicine),Twentieth Century Histories,Twentieth Century History

Related Publications

Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
September 2015, The Korean journal of internal medicine,
Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
August 2011, Current opinion in organ transplantation,
Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
August 2020, Transplantation,
Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
September 2000, Transplantation,
Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
November 2019, Transplantation,
Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
January 1995, Transplantation,
Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
March 2020, Transplantation,
Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
January 2001, Transplantation proceedings,
Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
May 2018, Human immunology,
Tetsu Oura, and Kiyohiko Hotta, and A B Cosimi, and Tatsuo Kawai
April 2019, Transplantation,
Copied contents to your clipboard!