Co-repressors 2000. 2000

L J Burke, and A Baniahmad
Genetic Institute, Justus Liebig University, Heinrich Buff Ring 58-62, D-35392 Giessen, Germany.

In the last 5 years, many co-repressors have been identified in eukaryotes that function in a wide range of species, from yeast to Drosophila and humans. Co-repressors are coregulators that are recruited by DNA-bound transcriptional silencers and play essential roles in many pathways including differentiation, proliferation, programmed cell death, and cell cycle. Accordingly, it has been shown that aberrant interactions of co-repressors with transcriptional silencers provide the molecular basis of a variety of human diseases. Co-repressors mediate transcriptional silencing by mechanisms that include direct inhibition of the basal transcription machinery and recruitment of chromatin-modifying enzymes. Chromatin modification includes histone deacetylation, which is thought to lead to a compact chromatin structure to which the accessibility of transcriptional activators is impaired. In a general mechanistic view, the overall picture suggests that transcriptional silencers and co-repressors act in analogy to transcriptional activators and coactivators, but with the opposite effect leading to gene silencing. We provide a comprehensive overview of the currently known higher eukaryotic co-repressors, their mechanism of action, and their involvement in biological and pathophysiological pathways. We also show the different pathways that lead to the regulation of co-repressor-silencer complex formation.

UI MeSH Term Description Entries
D007938 Leukemia A progressive, malignant disease of the blood-forming organs, characterized by distorted proliferation and development of leukocytes and their precursors in the blood and bone marrow. Leukemias were originally termed acute or chronic based on life expectancy but now are classified according to cellular maturity. Acute leukemias consist of predominately immature cells; chronic leukemias are composed of more mature cells. (From The Merck Manual, 2006) Leucocythaemia,Leucocythemia,Leucocythaemias,Leucocythemias,Leukemias
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D012097 Repressor Proteins Proteins which maintain the transcriptional quiescence of specific GENES or OPERONS. Classical repressor proteins are DNA-binding proteins that are normally bound to the OPERATOR REGION of an operon, or the ENHANCER SEQUENCES of a gene until a signal occurs that causes their release. Repressor Molecules,Transcriptional Silencing Factors,Proteins, Repressor,Silencing Factors, Transcriptional
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription
D056572 Histone Deacetylase Inhibitors Compounds that inhibit HISTONE DEACETYLASES. This class of drugs may influence gene expression by increasing the level of acetylated HISTONES in specific CHROMATIN domains. HDAC Inhibitor,HDAC Inhibitors,Histone Deacetylase Inhibitor,Deacetylase Inhibitor, Histone,Deacetylase Inhibitors, Histone,Inhibitor, HDAC,Inhibitor, Histone Deacetylase,Inhibitors, HDAC,Inhibitors, Histone Deacetylase
D020868 Gene Silencing Interruption or suppression of the expression of a gene at transcriptional or translational levels. Gene Inactivation,Inactivation, Gene,Silencing, Gene

Related Publications

L J Burke, and A Baniahmad
May 2006, Journal of cellular biochemistry,
L J Burke, and A Baniahmad
February 2005, The Journal of steroid biochemistry and molecular biology,
L J Burke, and A Baniahmad
October 2023, Nature reviews. Genetics,
L J Burke, and A Baniahmad
May 2014, Neuropharmacology,
L J Burke, and A Baniahmad
May 2000, Steroids,
L J Burke, and A Baniahmad
June 1998, Current opinion in cell biology,
L J Burke, and A Baniahmad
December 1998, Journal of molecular biology,
L J Burke, and A Baniahmad
March 2008, Trends in plant science,
L J Burke, and A Baniahmad
January 2012, Molecular and cellular endocrinology,
L J Burke, and A Baniahmad
August 2001, BioEssays : news and reviews in molecular, cellular and developmental biology,
Copied contents to your clipboard!