Multiple blocks to human immunodeficiency virus type 1 replication in rodent cells. 2000

P D Bieniasz, and B R Cullen
Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA. pbienias@adarc.adarc.org

The recent identification of human gene products that are required for early steps in the human immunodeficiency virus type 1 (HIV-1) life cycle has raised the possibility that rodents might be engineered to support HIV-1 infection. Therefore, we have examined the ability of modified mouse, rat, and hamster cell lines to support productive HIV-1 replication. Rodent cells, engineered to support Tat function by stable expression of a permissive cyclin T1 protein, proved to be able to support reverse transcription, integration, and early gene expression at levels comparable to those observed in human cell lines. Surprisingly, however, levels of CD4- and coreceptor-dependent virus entry were reduced to a variable but significant extent in both mouse and rat fibroblast cell lines. Additional posttranscriptional defects were observed, including a reduced level of unspliced HIV-1 genomic RNA and reduced structural gene expression. Furthermore, the HIV-1 Gag precursor is generally inefficiently processed and is poorly secreted from mouse and rat cells in a largely noninfectious form. These posttranscriptional defects, together, resulted in a dramatically reduced yield of infectious virus (up to 10,000-fold) over a single cycle of HIV-1 replication, as compared to human cells. Interestingly, these defects were less pronounced in one hamster cell line, CHO, which not only was able to produce infectious HIV-1 particles at a level close to that observed in human cells, but also could support transient, low-level HIV-1 replication. Importantly, the blocks to infectious virus production in mouse and rat cells are recessive, since they can be substantially suppressed by fusion with uninfected human cells. These studies imply the existence of one or more human gene products, either lacking or nonfunctional in most rodent cells that are critical for infectious HIV-1 virion morphogenesis.

UI MeSH Term Description Entries
D002459 Cell Fusion Fusion of somatic cells in vitro or in vivo, which results in somatic cell hybridization. Cell Fusions,Fusion, Cell,Fusions, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012367 RNA, Viral Ribonucleic acid that makes up the genetic material of viruses. Viral RNA
D014771 Virion The infective system of a virus, composed of the viral genome, a protein core, and a protein coat called a capsid, which may be naked or enclosed in a lipoprotein envelope called the peplos. Virus Particle,Viral Particle,Viral Particles,Particle, Viral,Particle, Virus,Particles, Viral,Particles, Virus,Virions,Virus Particles
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015683 Gene Products, gag Proteins coded by the retroviral gag gene. The products are usually synthesized as protein precursors or POLYPROTEINS, which are then cleaved by viral proteases to yield the final products. Many of the final products are associated with the nucleoprotein core of the virion. gag is short for group-specific antigen. Viral gag Proteins,gag Antigen,gag Gene Product,gag Gene Products,gag Polyproteins,gag Protein,gag Viral Proteins,Gene Product, gag,Retroviral Antigen gag Protein,gag Antigens,gag Gene Related Protein,gag Polyprotein,Antigen, gag,Antigens, gag,Polyprotein, gag,Polyproteins, gag,Protein, gag,Proteins, Viral gag,Proteins, gag Viral,Viral Proteins, gag,gag Proteins, Viral

Related Publications

P D Bieniasz, and B R Cullen
August 1994, Proceedings of the National Academy of Sciences of the United States of America,
P D Bieniasz, and B R Cullen
September 2001, Journal of virology,
P D Bieniasz, and B R Cullen
November 1995, The Journal of general virology,
P D Bieniasz, and B R Cullen
June 1995, The Journal of general virology,
P D Bieniasz, and B R Cullen
December 1992, Journal of virology,
P D Bieniasz, and B R Cullen
January 1991, Research in virology,
P D Bieniasz, and B R Cullen
July 2007, Journal of virology,
Copied contents to your clipboard!