Characteristics of P2X7 receptors from human B lymphocytes expressed in Xenopus oocytes. 2000

M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
Julius-Bernstein-Institut für Physiologie, Martin-Luther-Universität Halle-Wittenberg, Halle/Saale, Germany. manuela.klapperstueck@medizin.uni-halle.de

Human B lymphocytes express an ATP-gated ion channel (P2Z receptor), which shares similarities with the recently identified P2X7 receptor. Using gene specific primers, we have now isolated P2X7 cDNA from the total RNA of human B lymphocytes. This hP2X7 receptor subtype was expressed in Xenopus oocytes and electrophysiologically characterized. The hP2X7 receptor is similar to, but does not completely match, P2Z of human B cells. The hP2X7 receptors resemble the P2Z receptors with regard to the ATP concentration of half maximal activation, reproducibility, permeation characteristics and lack of desensitization of the ATP-evoked currents. However, in contrast to the native lymphocytic P2Z receptor, the time course of activation of hP2X7 displayed an additional linearly increasing current component. Furthermore, a second, small and slowly deactivating current component exists only in hP2X7 expressed in oocytes. The activation and deactivation kinetics as well as permeation characteristics of hP2X7 are different from rat P2X7 recently expressed in oocytes. Unlike in mammalian cells, hP2X7 expressed in Xenopus oocytes is not sufficient to induce large non-selective pores.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
March 2015, Anesthesia and analgesia,
M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
April 1984, Proceedings of the Royal Society of London. Series B, Biological sciences,
M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
May 2002, British journal of pharmacology,
M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
December 1995, FEBS letters,
M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
March 2010, ACS chemical neuroscience,
M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
February 2012, ACS chemical neuroscience,
M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
April 2012, British journal of pharmacology,
M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
July 1996, European journal of pharmacology,
M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
March 1998, Neuroreport,
M Klapperstück, and C Büttner, and T Böhm, and G Schmalzing, and F Markwardt
January 1998, Neuropharmacology,
Copied contents to your clipboard!