Different characteristics of AMPA receptor agonists acting at AMPA receptors expressed in Xenopus oocytes. 1996

P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
Department of Biological Sciences, Royal Danish School of Pharmacy, Copenhagen, Denmark. pwa@novo.dk

A series of (RS)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) analogues were evaluated for activity at homo-oligomeric glutamate1-flop (Glu1-flop) receptors expressed in Xenopus oocytes, using the two-electrode voltage clamp technique. (RS)-2-Amino-3-(3-carboxy-5-methyl-4-isoxazolyl)propionic acid (ACPA) (EC50, 2.4 microM), a homologue of AMPA having a carboxyl group as the terminal acidic functionality, was five times more potent than AMPA (EC50, 12 microM) and 20 times more potent than kainate (EC50, 46 microM). (RS)-2-Amino-3(3-hydroxy-5-trifluoromethyl-4-isoxazolyl)propionic acid (Tri-F-AMPA), in which an electronegative trifluoromethyl group is substituted for the methyl group on the isoxazole ring in the AMPA structure, was three times more potent than AMPA, whereas (RS)-3-hydroxy-4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridine-5-carboxylic acid (5-HPCA), a bicyclic analogue of AMPA with highly restricted conformational flexibility was 10 times less potent than AMPA. The limiting slope of log-log plots of Glu1-flop receptor currents versus low agonist concentrations had a value of 1.7 for ACPA and kainate compared to 1.5 for Tri-F-AMPA and 1.3 for 5-HPCA and AMPA. The amplitude of responses evoked by near saturating concentrations of the agonists varied more than 7-fold. The sequence of efficacy was ACPA = kainate > Tri-F-AMPA > AMPA > 5-HPCA. Moreover, when saturating concentrations of Tri-F-AMPA and kainate were co-applied, the response was significantly greater than when each of the agonists was applied separately. The potency of the antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX) (estimated KB, approximately 200 nM), to block currents mediated by Glu1-flop receptors was similar for all of the agonists tested in this study. These results indicate that relatively minor changes in the molecular structure of AMPA are associated with marked effects on potency and efficacy. In particular, it is suggested that the acidity of the terminal group plays a major role in determining the degree of receptor activation in the steady state.

UI MeSH Term Description Entries
D007608 Kainic Acid (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. Digenic Acid,Kainate,Acid, Digenic,Acid, Kainic
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011810 Quinoxalines Quinoxaline
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014982 Xenopus laevis The commonest and widest ranging species of the clawed "frog" (Xenopus) in Africa. This species is used extensively in research. There is now a significant population in California derived from escaped laboratory animals. Platanna,X. laevis,Platannas,X. laevi
D018091 Receptors, AMPA A class of ionotropic glutamate receptors characterized by their affinity for the agonist AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid). AMPA Receptors,Quisqualate Receptors,AMPA Receptor,Quisqualate Receptor,Receptor, AMPA,Receptor, Quisqualate,Receptors, Quisqualate
D018350 alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid An IBOTENIC ACID homolog and glutamate agonist. The compound is the defining agonist for the AMPA subtype of glutamate receptors (RECEPTORS, AMPA). It has been used as a radionuclide imaging agent but is more commonly used as an experimental tool in cell biological studies. AMPA,AMPA, (+-)-Isomer,AMPA, (R)-Isomer,AMPA, (R)-Isomer, Monohydrobromide,AMPA, (S)-Isomer,AMPA, (S)-Isomer, Monohydrobromide,alpha Amino 3 hydroxy 5 methyl 4 isoxazolepropionic Acid
D018408 Patch-Clamp Techniques An electrophysiologic technique for studying cells, cell membranes, and occasionally isolated organelles. All patch-clamp methods rely on a very high-resistance seal between a micropipette and a membrane; the seal is usually attained by gentle suction. The four most common variants include on-cell patch, inside-out patch, outside-out patch, and whole-cell clamp. Patch-clamp methods are commonly used to voltage clamp, that is control the voltage across the membrane and measure current flow, but current-clamp methods, in which the current is controlled and the voltage is measured, are also used. Patch Clamp Technique,Patch-Clamp Technic,Patch-Clamp Technique,Voltage-Clamp Technic,Voltage-Clamp Technique,Voltage-Clamp Techniques,Whole-Cell Recording,Patch-Clamp Technics,Voltage-Clamp Technics,Clamp Technique, Patch,Clamp Techniques, Patch,Patch Clamp Technic,Patch Clamp Technics,Patch Clamp Techniques,Recording, Whole-Cell,Recordings, Whole-Cell,Technic, Patch-Clamp,Technic, Voltage-Clamp,Technics, Patch-Clamp,Technics, Voltage-Clamp,Technique, Patch Clamp,Technique, Patch-Clamp,Technique, Voltage-Clamp,Techniques, Patch Clamp,Techniques, Patch-Clamp,Techniques, Voltage-Clamp,Voltage Clamp Technic,Voltage Clamp Technics,Voltage Clamp Technique,Voltage Clamp Techniques,Whole Cell Recording,Whole-Cell Recordings

Related Publications

P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
May 1998, Neuroscience letters,
P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
April 2004, Bioorganic & medicinal chemistry letters,
P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
December 2003, Alcoholism, clinical and experimental research,
P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
August 2000, Biochimica et biophysica acta,
P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
January 1994, European journal of pharmacology,
P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
March 2010, ACS chemical neuroscience,
P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
December 2007, Naunyn-Schmiedeberg's archives of pharmacology,
P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
April 2012, British journal of pharmacology,
P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
March 1995, Neuroscience letters,
P Wahl, and U Madsen, and T Banke, and P Krogsgaard-Larsen, and A Schousboe
January 1998, Neuropharmacology,
Copied contents to your clipboard!