Common phylogeny of catalase-peroxidases and ascorbate peroxidases. 2000

M Zámocký, and S Janecek, and F Koller
Institute of Biochemistry and Molecular Cell Biology, University of Vienna, and Ludwig Boltzmann Forschungsstelle, Dr. Bohrgasse 9, A-1030, Vienna, Austria. mz@abc.univie.ac.at

Catalase-peroxidases belong to Class I of the plant, fungal, bacterial peroxidase superfamily, together with yeast cytochrome c peroxidase and ascorbate peroxidases. Obviously these bifunctional enzymes arose via gene duplication of an ancestral hydroperoxidase. A 230-residues long homologous region exists in all eukaryotic members of Class I, which is present twice in both prokaryotic and archaeal catalase-peroxidases. The overall structure of eukaryotic Class I peroxidases may be retained in both halves of catalase-peroxidases, with major insertions in several loops, some of which may participate in inter-domain or inter-subunit interactions. Interspecies distances in unrooted phylogenetic trees, analysis of sequence similarities in distinct structural regions, as well as hydrophobic cluster analysis (HCA) suggest that one single tandem duplication had already occurred in the common ancestor prior to the segregation of the archaeal and eubacterial lines. The C-terminal halves of extant catalase-peroxidases clearly did not accumulate random changes, so prolonged periods of independent evolution of the duplicates can be ruled out. Fusion of both copies must have occurred still very early or even in the course of the duplication. We suggest that the sparse representatives of eukaryotic catalase-peroxidases go back to lateral gene transfer, and that, except for several fungi, only single copy hydroperoxidases occur in the eukaryotic lineage. The N-terminal halves of catalase-peroxidases, which reveal higher homology with the single-copy members of the superfamily, obviously are catalytically active, whereas the C-terminal halves of the bifunctional enzymes presumably control the access to the haem pocket and facilitate stable folding. The bifunctional nature of catalase-peroxidases can be ascribed to several unique sequence peculiarities conserved among all N-terminal halves, which most likely will affect the properties of both haem ligands.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010544 Peroxidases Ovoperoxidase
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular
D016208 Databases, Factual Extensive collections, reputedly complete, of facts and data garnered from material of a specialized subject area and made available for analysis and application. The collection can be automated by various contemporary methods for retrieval. The concept should be differentiated from DATABASES, BIBLIOGRAPHIC which is restricted to collections of bibliographic references. Databanks, Factual,Data Banks, Factual,Data Bases, Factual,Data Bank, Factual,Data Base, Factual,Databank, Factual,Database, Factual,Factual Data Bank,Factual Data Banks,Factual Data Base,Factual Data Bases,Factual Databank,Factual Databanks,Factual Database,Factual Databases
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D060387 Ascorbate Peroxidases Peroxidases that utilize ASCORBIC ACID as an electron donor to reduce HYDROGEN PEROXIDE to WATER. The reaction results in the production of monodehydroascorbic acid and DEHYDROASCORBIC ACID. Ascorbate Peroxidase,L-Ascorbic Acid Peroxidase,Acid Peroxidase, L-Ascorbic,L Ascorbic Acid Peroxidase,Peroxidase, Ascorbate,Peroxidase, L-Ascorbic Acid,Peroxidases, Ascorbate

Related Publications

M Zámocký, and S Janecek, and F Koller
December 1999, Free radical research,
M Zámocký, and S Janecek, and F Koller
December 2014, Cellular and molecular life sciences : CMLS,
M Zámocký, and S Janecek, and F Koller
March 2008, Archives of biochemistry and biophysics,
M Zámocký, and S Janecek, and F Koller
March 2001, FEBS letters,
M Zámocký, and S Janecek, and F Koller
August 2010, Archives of biochemistry and biophysics,
M Zámocký, and S Janecek, and F Koller
August 2019, Plant physiology,
M Zámocký, and S Janecek, and F Koller
August 2009, Biochemical Society transactions,
M Zámocký, and S Janecek, and F Koller
June 2013, Archives of microbiology,
M Zámocký, and S Janecek, and F Koller
December 2005, EMBO reports,
M Zámocký, and S Janecek, and F Koller
October 2004, The Journal of biological chemistry,
Copied contents to your clipboard!