Two distinct groups of fungal catalase/peroxidases. 2009

Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
Metalloprotein Research Group, Division of Biochemistry, Department of Chemistry, BOKU, University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna Austria. marcel.zamocky@boku.ac.at

Catalase/peroxidases (KatGs) are bifunctional haem b-containing (Class I) peroxidases with overwhelming catalase activity and substantial peroxidase activity with various one-electron donors. These unique oxidoreductases evolved in ancestral bacteria revealing a complex gene-duplicated structure. Besides being found in numerous bacteria of all phyla, katG genes were also detected in genomes of lower eukaryotes, most prominently of sac and club fungi. Phylogenetic analysis demonstrates the occurrence of two distinct groups of fungal KatGs that differ in localization, structural and functional properties. Analysis of lateral gene transfer of bacterial katGs into fungal genomes reveals that the most probable progenitor was a katG from a bacteroidetes predecessor. The putative physiological role(s) of both fungal KatG groups is discussed with respect to known structure-function relationships in bacterial KatGs and is related with the acquisition of (phyto)pathogenicity in fungi.

UI MeSH Term Description Entries
D010544 Peroxidases Ovoperoxidase
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D002374 Catalase An oxidoreductase that catalyzes the conversion of HYDROGEN PEROXIDE to water and oxygen. It is present in many animal cells. A deficiency of this enzyme results in ACATALASIA. Catalase A,Catalase T,Manganese Catalase,Mn Catalase
D005656 Fungal Proteins Proteins found in any species of fungus. Fungal Gene Products,Fungal Gene Proteins,Fungal Peptides,Gene Products, Fungal,Yeast Proteins,Gene Proteins, Fungal,Peptides, Fungal,Proteins, Fungal
D005658 Fungi A kingdom of eukaryotic, heterotrophic organisms that live parasitically as saprobes, including MUSHROOMS; YEASTS; smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi, commonly known as molds, refer to those that grow as multicellular colonies. Fungi, Filamentous,Molds,Filamentous Fungi,Filamentous Fungus,Fungus,Fungus, Filamentous,Mold
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational
D022761 Gene Transfer, Horizontal The naturally occurring transmission of genetic information between organisms, related or unrelated, circumventing parent-to-offspring transmission. Horizontal gene transfer may occur via a variety of naturally occurring processes such as GENETIC CONJUGATION; GENETIC TRANSDUCTION; and TRANSFECTION. It may result in a change of the recipient organism's genetic composition (TRANSFORMATION, GENETIC). Gene Transfer, Lateral,Horizontal Gene Transfer,Lateral Gene Transfer,Recombination, Interspecies,Recombination, Interspecific,Gene Transfers, Lateral,Interspecies Recombination,Interspecific Recombination,Lateral Gene Transfers

Related Publications

Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
March 2000, FEMS microbiology letters,
Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
July 2023, Antioxidants (Basel, Switzerland),
Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
October 2000, Gene,
Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
March 2008, Archives of biochemistry and biophysics,
Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
March 2001, FEBS letters,
Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
December 1999, Free radical research,
Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
November 2010, Biochimica et biophysica acta,
Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
August 2010, Archives of biochemistry and biophysics,
Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
June 2013, Archives of microbiology,
Marcel Zámocký, and Paul G Furtmüller, and Christian Obinger
October 2004, The Journal of biological chemistry,
Copied contents to your clipboard!