Oxytocin receptor agonists enhance inhibitory synaptic transmission in the rat hippocampus by activating interneurons in stratum pyramidale. 2000

M Zaninetti, and M Raggenbass
Department of Physiology, University Medical Center, CH-1211 Geneva 4, Switzerland. mario.raggenbass@medecine.unige.ch

Oxytocin probably plays a role as a neurotransmitter/neuromodulator in the hippocampus of the rat. Oxytocin binding sites are present in the subiculum and CA1 region and oxytocin can excite a class of CA1 nonpyramidal neurons. In the present work we characterized the effect of oxytocin on hippocampal synaptic transmission. Whole-cell recordings were obtained from pyramidal neurons, in conditions of nearly symmetrical chloride concentrations. The selective oxytocin receptor agonist, [Thr4,Gly7]-oxytocin (TGOT), caused an increase in the frequency and amplitude of spontaneous inhibitory postsynaptic currents (IPSCs) in virtually all neurons. These peptide-enhanced IPSCs were blocked by bicuculline, but not by strychnine, and reversed near 0 mV, indicating that they were mediated by gamma-aminobutyric acid (GABA)A receptors. On average, TGOT caused a nearly threefold increase in the frequency and almost a doubling in the amplitude of spontaneous IPSCs. TGOT did not influence the frequency and the amplitude of miniature IPSCs or spontaneous excitatory postsynaptic currents (EPSCs), and had no effect on evoked IPSCs. The peptide did not affect the basic membrane properties of pyramidal neurons or their GABA sensitivity. Thus, TGOT facilitated inhibitory transmission by exerting an excitatory action on the soma and/or dendrites of GABAergic interneurons. Extracellular recordings were performed in interneurons located in various hippocampal strata. Their sensitivity to TGOT was compared to that of substance P (SP). Interneurons in stratum pyramidale were excited both by TGOT and by SP. By contrast, stratum radiatum interneurons responded to SP but not to TGOT. In stratum oriens, half of the interneurons responded to SP, but only a minority to TGOT. Thus, oxytocin-responsive interneurons appear to be preferentially located in close vicinity of pyramidal neurons.

UI MeSH Term Description Entries
D007395 Interneurons Most generally any NEURONS which are not motor or sensory. Interneurons may also refer to neurons whose AXONS remain within a particular brain region in contrast to projection neurons, which have axons projecting to other brain regions. Intercalated Neurons,Intercalated Neuron,Interneuron,Neuron, Intercalated,Neurons, Intercalated
D008297 Male Males
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D011712 Pyramidal Tracts Fibers that arise from cells within the cerebral cortex, pass through the medullary pyramid, and descend in the spinal cord. Many authorities say the pyramidal tracts include both the corticospinal and corticobulbar tracts. Corticobulbar Tracts,Corticospinal Tracts,Decussation, Pyramidal,Corticobulbar Tract,Corticospinal Tract,Pyramidal Decussation,Pyramidal Tract,Tract, Corticobulbar,Tract, Corticospinal,Tract, Pyramidal,Tracts, Corticobulbar,Tracts, Corticospinal,Tracts, Pyramidal
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001640 Bicuculline An isoquinoline alkaloid obtained from Dicentra cucullaria and other plants. It is a competitive antagonist for GABA-A receptors. 6-(5,6,7,8-Tetrahydro-6-methyl-1,3-dioxolo(4,5-g)isoquinolin-5-yl)furo(3,4-e)1,3-benzodioxol-8(6H)one
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats

Related Publications

M Zaninetti, and M Raggenbass
May 1994, Journal of neurophysiology,
M Zaninetti, and M Raggenbass
October 1977, Life sciences,
M Zaninetti, and M Raggenbass
November 2000, European journal of pharmacology,
M Zaninetti, and M Raggenbass
May 1996, Zhongguo yao li xue bao = Acta pharmacologica Sinica,
M Zaninetti, and M Raggenbass
June 2003, The European journal of neuroscience,
Copied contents to your clipboard!