Light-induced phase-shifts in the circadian expression rhythm of mammalian period genes in the mouse heart. 2000

K Sakamoto, and N Ishida
National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology, MITI, Higashi 1-1, Tsukuba 305-8566, Japan.

To investigate the molecular mechanism that regulates circadian rhythms in mammalian peripheral tissues, we examined the phase shifts evoked by light exposure in the circadian mRNA expression rhythms of mammalian Period genes (mPer1, mPer2 and mPer3) and a clock-controlled gene Dbp, in the mouse heart, by Northern blot analysis. The light pulse did not induce any acute mRNA expression of mPer in the heart, but the pulse gave rise to phase shifts in the circadian mRNA rhythms. On the first day after the exposure, only mPer1 mRNA showed a phase shift, whereas obvious phase shifts were not observed in the rhythms of mPer2, mPer3 and Dbp mRNAs. On the second day, phase shifts occurred to a similar extent in the mRNA rhythms of all four genes examined. The rhythm of mPer1 mRNA shifted fastest among those of the three mPers. Therefore mPer1 seems to play an important role in phase resetting of mammalian peripheral oscillators. Immediate responses to light pulses in mRNA expression of mPers may not be required for phase shifting of peripheral circadian oscillators. Our findings suggest that mammals require more than one day to have peripheral oscillators entrained to a new daily schedule.

UI MeSH Term Description Entries
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008322 Mammals Warm-blooded vertebrate animals belonging to the class Mammalia, including all that possess hair and suckle their young. Mammalia,Mammal
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D009687 Nuclear Proteins Proteins found in the nucleus of a cell. Do not confuse with NUCLEOPROTEINS which are proteins conjugated with nucleic acids, that are not necessarily present in the nucleus. Nucleolar Protein,Nucleolar Proteins,Nuclear Protein,Protein, Nuclear,Protein, Nucleolar,Proteins, Nuclear,Proteins, Nucleolar
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D003624 Darkness The absence of light. Darknesses
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001683 Biological Clocks The physiological mechanisms that govern the rhythmic occurrence of certain biochemical, physiological, and behavioral phenomena. Biological Oscillators,Oscillators, Endogenous,Pacemakers, Biological,Biologic Clock,Biologic Oscillator,Biological Pacemakers,Clock, Biologic,Clocks, Biological,Oscillator, Biologic,Oscillators, Biological,Pacemaker, Biologic,Pacemakers, Biologic,Biologic Clocks,Biologic Oscillators,Biologic Pacemaker,Biologic Pacemakers,Biological Clock,Biological Oscillator,Biological Pacemaker,Clock, Biological,Clocks, Biologic,Endogenous Oscillator,Endogenous Oscillators,Oscillator, Biological,Oscillator, Endogenous,Oscillators, Biologic,Pacemaker, Biological

Related Publications

K Sakamoto, and N Ishida
November 2020, Scientific reports,
K Sakamoto, and N Ishida
August 1994, The Journal of clinical endocrinology and metabolism,
K Sakamoto, and N Ishida
July 2004, Alcoholism, clinical and experimental research,
K Sakamoto, and N Ishida
November 2009, IET systems biology,
K Sakamoto, and N Ishida
November 1997, Chronobiology international,
K Sakamoto, and N Ishida
February 1973, The Journal of cell biology,
Copied contents to your clipboard!