Period-phase map: two-dimensional selection of circadian rhythm-related genes. 2009

R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
National Institute of Advanced Industrial Science and Technology, Computational Biology Research Center, Koto, Tokyo, Japan.

Many genes related to the circadian rhythm, especially those involved in phase shifts induced by different environmental stimuli, still remain enigmatic. In this study, the authors monitored the expression of rat genes measured with multiple phase-resetting stimuli, and developed a technique to extract the candidate genes for the changes in circadian rhythm by the stimuli, from microarray data. First, the spectra for the time series of gene expression were estimated by fast Fourier transform, and then two fitting methods, the random period fitting method and the conditional curve fitting method, using the estimated periods as the initial values, were applied to the control and the stimulated expression data to estimate the periods and the phases. Finally, by comparing the two sets of periods and phases, the period change and the phase shift by stimuli were estimated to extract the candidate genes related to the master clock, by mapping the period change and the phase shift on a two-dimensional space, a period-phase map (PPM). As an indirect validation of the genes selected by our method, the significant enrichment of extracted gene clusters on the PPM was further evaluated, in terms of biological function. As a result, the gene clusters related to photoreceptors and neural regulation emerged on the PPM, thus implying the relationships in the stimulus response of the master clock that resides in the brain at the intersection of the optic nerves. Thus, the present approach is a feasible means to explore the oscillatory genes related to stimulus responses.

UI MeSH Term Description Entries
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002940 Circadian Rhythm The regular recurrence, in cycles of about 24 hours, of biological processes or activities, such as sensitivity to drugs or environmental and physiological stimuli. Diurnal Rhythm,Nyctohemeral Rhythm,Twenty-Four Hour Rhythm,Nycthemeral Rhythm,Circadian Rhythms,Diurnal Rhythms,Nycthemeral Rhythms,Nyctohemeral Rhythms,Rhythm, Circadian,Rhythm, Diurnal,Rhythm, Nycthemeral,Rhythm, Nyctohemeral,Rhythm, Twenty-Four Hour,Rhythms, Circadian,Rhythms, Diurnal,Rhythms, Nycthemeral,Rhythms, Nyctohemeral,Rhythms, Twenty-Four Hour,Twenty Four Hour Rhythm,Twenty-Four Hour Rhythms
D005583 Fourier Analysis Analysis based on the mathematical function first formulated by Jean-Baptiste-Joseph Fourier in 1807. The function, known as the Fourier transform, describes the sinusoidal pattern of any fluctuating pattern in the physical world in terms of its amplitude and its phase. It has broad applications in biomedicine, e.g., analysis of the x-ray crystallography data pivotal in identifying the double helical nature of DNA and in analysis of other molecules, including viruses, and the modified back-projection algorithm universally used in computerized tomography imaging, etc. (From Segen, The Dictionary of Modern Medicine, 1992) Fourier Series,Fourier Transform,Analysis, Cyclic,Analysis, Fourier,Cyclic Analysis,Analyses, Cyclic,Cyclic Analyses,Series, Fourier,Transform, Fourier
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013493 Suprachiasmatic Nucleus An ovoid densely packed collection of small cells of the anterior hypothalamus lying close to the midline in a shallow impression of the OPTIC CHIASM. Hypothalamic Suprachiasmatic Nuclei,Hypothalamic Suprachiasmatic Nucleus,Suprachiasmatic Nuclei,Suprachiasmatic Nuclei, Hypothalamic,Suprachiasmatic Nucleus, Hypothalamic
D015203 Reproducibility of Results The statistical reproducibility of measurements (often in a clinical context), including the testing of instrumentation or techniques to obtain reproducible results. The concept includes reproducibility of physiological measurements, which may be used to develop rules to assess probability or prognosis, or response to a stimulus; reproducibility of occurrence of a condition; and reproducibility of experimental results. Reliability and Validity,Reliability of Result,Reproducibility Of Result,Reproducibility of Finding,Validity of Result,Validity of Results,Face Validity,Reliability (Epidemiology),Reliability of Results,Reproducibility of Findings,Test-Retest Reliability,Validity (Epidemiology),Finding Reproducibilities,Finding Reproducibility,Of Result, Reproducibility,Of Results, Reproducibility,Reliabilities, Test-Retest,Reliability, Test-Retest,Result Reliabilities,Result Reliability,Result Validities,Result Validity,Result, Reproducibility Of,Results, Reproducibility Of,Test Retest Reliability,Validity and Reliability,Validity, Face
D016000 Cluster Analysis A set of statistical methods used to group variables or observations into strongly inter-related subgroups. In epidemiology, it may be used to analyze a closely grouped series of events or cases of disease or other health-related phenomenon with well-defined distribution patterns in relation to time or place or both. Clustering,Analyses, Cluster,Analysis, Cluster,Cluster Analyses,Clusterings
D049490 Systems Biology Comprehensive, methodical analysis of complex biological systems by monitoring responses to perturbations of biological processes. Large scale, computerized collection and analysis of the data are used to develop and test models of biological systems. Biology, Systems
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
February 2006, BMC bioinformatics,
R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
November 2000, The European journal of neuroscience,
R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
October 1995, Psychopharmacology,
R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
September 1999, Nature medicine,
R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
October 2000, Journal of comparative physiology. A, Sensory, neural, and behavioral physiology,
R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
September 2015, Diabetes, obesity & metabolism,
R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
February 2015, Scientific reports,
R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
August 2019, Neurologic clinics,
R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
January 1975, Planta,
R Morioka, and M Arita, and K Sakamoto, and S Kawaguchi, and H Tei, and K Horimoto
January 2022, Frontiers in oncology,
Copied contents to your clipboard!