Chimeric double-stranded RNA-specific adenosine deaminase ADAR1 proteins reveal functional selectivity of double-stranded RNA-binding domains from ADAR1 and protein kinase PKR. 2000

Y Liu, and M Lei, and C E Samuel
Department of Molecular, Cellular and Developmental Biology, and Interdepartmental Graduate Program of Biochemistry and Molecular Biology, University of California, Santa Barbara, CA 93106, USA.

The RNA-specific adenosine deaminase (ADAR1) and the RNA-dependent protein kinase (PKR) are both interferon-inducible double-stranded (ds) RNA-binding proteins. ADAR1, an RNA editing enzyme that converts adenosine to inosine, possesses three copies of a dsRNA-binding motif (dsRBM). PKR, a regulator of translation, has two copies of the highly conserved dsRBM motif. To assess the functional selectivity of the dsRBM motifs in ADAR1, we constructed and characterized chimeric proteins in which the dsRBMs of ADAR1 were substituted with those of PKR. Recombinant PKR-ADAR1 chimeras retained significant RNA adenosine deaminase activity measured with a synthetic dsRNA substrate when the spacer region between the RNA-binding and catalytic domains of the deaminase was exactly preserved. However, with natural substrates, substitution of the first two dsRBMs of ADAR1 with those from PKR dramatically reduced site-selective editing activity at the R/G and (+)60 sites of the glutamate receptor B subunit pre-RNA and completely abolished editing of the serotonin 2C receptor (5-HT(2C)R) pre-RNA at the A site. Chimeric deaminases possessing only the two dsRBMs from PKR were incapable of editing either glutamate receptor B subunit or 5-HT(2C)R natural sites but edited synthetic dsRNA. Finally, RNA antagonists of PKR significantly inhibited the activity of chimeric PKR-ADAR1 proteins relative to wild-type ADAR1, further demonstrating the functional selectivity of the dsRBM motifs.

UI MeSH Term Description Entries
D011985 Receptors, Serotonin Cell-surface proteins that bind SEROTONIN and trigger intracellular changes which influence the behavior of cells. Several types of serotonin receptors have been recognized which differ in their pharmacology, molecular biology, and mode of action. 5-HT Receptor,5-HT Receptors,5-Hydroxytryptamine Receptor,5-Hydroxytryptamine Receptors,Receptors, Tryptamine,Serotonin Receptor,Serotonin Receptors,Tryptamine Receptor,Tryptamine Receptors,Receptors, 5-HT,Receptors, 5-Hydroxytryptamine,5 HT Receptor,5 HT Receptors,5 Hydroxytryptamine Receptor,5 Hydroxytryptamine Receptors,Receptor, 5-HT,Receptor, 5-Hydroxytryptamine,Receptor, Serotonin,Receptor, Tryptamine,Receptors, 5 HT,Receptors, 5 Hydroxytryptamine
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D003641 Deamination The removal of an amino group (NH2) from a chemical compound. Deaminations
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000241 Adenosine A nucleoside that is composed of ADENINE and D-RIBOSE. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. Adenocard,Adenoscan
D000243 Adenosine Deaminase An enzyme that catalyzes the hydrolysis of ADENOSINE to INOSINE with the elimination of AMMONIA. Adenosine Aminohydrolase,Aminohydrolase, Adenosine,Deaminase, Adenosine
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012322 RNA Precursors RNA transcripts of the DNA that are in some unfinished stage of post-transcriptional processing (RNA PROCESSING, POST-TRANSCRIPTIONAL) required for function. RNA precursors may undergo several steps of RNA SPLICING during which the phosphodiester bonds at exon-intron boundaries are cleaved and the introns are excised. Consequently a new bond is formed between the ends of the exons. Resulting mature RNAs can then be used; for example, mature mRNA (RNA, MESSENGER) is used as a template for protein production. Precursor RNA,Primary RNA Transcript,RNA, Messenger, Precursors,RNA, Ribosomal, Precursors,RNA, Small Nuclear, Precursors,RNA, Transfer, Precursors,Pre-mRNA,Pre-rRNA,Pre-snRNA,Pre-tRNA,Primary Transcript, RNA,RNA Precursor,mRNA Precursor,rRNA Precursor,snRNA Precursor,tRNA Precursor,Pre mRNA,Pre rRNA,Pre snRNA,Pre tRNA,Precursor, RNA,Precursor, mRNA,Precursor, rRNA,Precursor, snRNA,Precursor, tRNA,Precursors, RNA,RNA Primary Transcript,RNA Transcript, Primary,RNA, Precursor,Transcript, Primary RNA,Transcript, RNA Primary
D012330 RNA, Double-Stranded RNA consisting of two strands as opposed to the more prevalent single-stranded RNA. Most of the double-stranded segments are formed from transcription of DNA by intramolecular base-pairing of inverted complementary sequences separated by a single-stranded loop. Some double-stranded segments of RNA are normal in all organisms. Double-Stranded RNA,Double Stranded RNA,RNA, Double Stranded
D016601 RNA-Binding Proteins Proteins that bind to RNA molecules. Included here are RIBONUCLEOPROTEINS and other proteins whose function is to bind specifically to RNA. Double-Stranded RNA-Binding Protein,Double-Stranded RNA-Binding Proteins,ds RNA-Binding Protein,RNA-Binding Protein,ds RNA-Binding Proteins,Double Stranded RNA Binding Protein,Double Stranded RNA Binding Proteins,Protein, Double-Stranded RNA-Binding,Protein, ds RNA-Binding,RNA Binding Protein,RNA Binding Proteins,RNA-Binding Protein, Double-Stranded,RNA-Binding Protein, ds,RNA-Binding Proteins, Double-Stranded,ds RNA Binding Protein

Related Publications

Y Liu, and M Lei, and C E Samuel
January 2006, Progress in nucleic acid research and molecular biology,
Y Liu, and M Lei, and C E Samuel
October 2009, The Journal of biological chemistry,
Y Liu, and M Lei, and C E Samuel
November 2019, The Journal of biological chemistry,
Y Liu, and M Lei, and C E Samuel
June 2014, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
Y Liu, and M Lei, and C E Samuel
July 1998, Methods (San Diego, Calif.),
Y Liu, and M Lei, and C E Samuel
September 2018, Viral immunology,
Copied contents to your clipboard!