Towards the proteome of the rhodopsin-bearing post-Golgi compartment of retinal photoreceptor cells. 2000

V Morel, and R Poschet, and V Traverso, and D Deretic
Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor 48105, USA.

Polarized sorting of rhodopsin in retinal rod photoreceptor cells is mediated by post-Golgi carrier membranes that bud from the trans-Golgi network and fuse with the specialized domain of the plasma membrane in the rod inner segment. The identity of the majority of the resident proteins of this organelle still remains elusive, despite multifaceted approaches to study this compartment. In the present study we have taken a proteomic approach to the analysis of the post-Golgi carriers. First, we modified the previously established fractionation protocols in order to achieve greater purity of the isolated membranes. Specifically, the new fractionation scheme depleted the post-Golgi fraction of cytosolic proteins that were the most abundant contaminants complicating analysis of two-dimensional (2-D) gel profiles in our previous preparations. The isolated membranes were subjected to 2-D gel electrophoresis, immunoblotting and microsequencing. This analysis showed that the improved subcellular fractionation yielded a fraction highly enriched in rhodopsin-bearing post-Golgi carrier membranes. Two-dimensional mapping revealed 29 proteins that are preferentially found in this fraction and therefore represent candidates for post-Golgi membrane-specific proteins. This preparation of rhodopsin-bearing post-Golgi carriers is a first step towards the proteomics of this important organelle.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D011898 Ranidae The family of true frogs of the order Anura. The family occurs worldwide except in Antarctica. Frogs, True,Rana,Frog, True,True Frog,True Frogs
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012243 Rhodopsin A purplish-red, light-sensitive pigment found in RETINAL ROD CELLS of most vertebrates. It is a complex consisting of a molecule of ROD OPSIN and a molecule of 11-cis retinal (RETINALDEHYDE). Rhodopsin exhibits peak absorption wavelength at about 500 nm. Visual Purple
D013058 Mass Spectrometry An analytical method used in determining the identity of a chemical based on its mass using mass analyzers/mass spectrometers. Mass Spectroscopy,Spectrometry, Mass,Spectroscopy, Mass,Spectrum Analysis, Mass,Analysis, Mass Spectrum,Mass Spectrum Analysis,Analyses, Mass Spectrum,Mass Spectrum Analyses,Spectrum Analyses, Mass

Related Publications

V Morel, and R Poschet, and V Traverso, and D Deretic
June 1991, The Journal of cell biology,
V Morel, and R Poschet, and V Traverso, and D Deretic
December 1997, Electrophoresis,
V Morel, and R Poschet, and V Traverso, and D Deretic
January 1998, Eye (London, England),
V Morel, and R Poschet, and V Traverso, and D Deretic
April 1997, The Journal of biological chemistry,
V Morel, and R Poschet, and V Traverso, and D Deretic
June 2007, Neuroreport,
V Morel, and R Poschet, and V Traverso, and D Deretic
January 2010, BMC research notes,
V Morel, and R Poschet, and V Traverso, and D Deretic
September 2002, FEBS letters,
V Morel, and R Poschet, and V Traverso, and D Deretic
May 1976, Brookhaven symposia in biology,
V Morel, and R Poschet, and V Traverso, and D Deretic
January 1996, The Journal of biological chemistry,
Copied contents to your clipboard!