Cytoplasmic domain of rhodopsin is essential for post-Golgi vesicle formation in a retinal cell-free system. 1996

D Deretic, and B Puleo-Scheppke, and C Trippe
Department of Pathology, University of Texas Health Sciences Center at San Antonio 78284-7750, USA.

In retinal photoreceptors, highly polarized organization of the light-sensitive organelle, the rod outer segment, is maintained by the sorting of rhodopsin and its associated proteins into distinct post-Golgi vesicles that bud from the trans-Golgi network (TGN) and by their vectorial transport toward the rod outer segment. We have developed an assay that reconstitutes the formation of these vesicles in a retinal cell-free system. Vesicle formation in this cell-free assay is ATP-, GTP-, and cytosol-dependent. In frog retinas vesicle budding also proceeds at 0 degrees C, both in vivo and in vitro. Vesicles formed in vitro are indistinguishable from the vesicles formed in vivo by their buoyant density, protein composition, topology, and morphology. In addition to the previously identified G-proteins, these vesicles also contain rab11. Concurrently with vesicle budding, resident proteins are retained in the TGN. Collectively these data suggest that rhodopsin and its associated proteins are sorted upon exit from the TGN in this cell-free system. Removal of membrane-bound GTP-binding proteins of the rab family by rab GDP dissociation inhibitor completely abolishes formation of these vesicles and results in the retention of rhodopsin in the Golgi. A monoclonal antibody to the cytoplasmic (carboxy-terminal) domain of rhodopsin and its Fab fragments strongly inhibit vesicle formation and arrest newly synthesized rhodopsin in the TGN rather than the Golgi. Therefore rhodopsin sorting at the exit from the TGN is mediated by the interaction of its cytoplasmic domain with the intracellular sorting machinery.

UI MeSH Term Description Entries
D007425 Intracellular Membranes Thin structures that encapsulate subcellular structures or ORGANELLES in EUKARYOTIC CELLS. They include a variety of membranes associated with the CELL NUCLEUS; the MITOCHONDRIA; the GOLGI APPARATUS; the ENDOPLASMIC RETICULUM; LYSOSOMES; PLASTIDS; and VACUOLES. Membranes, Intracellular,Intracellular Membrane,Membrane, Intracellular
D008565 Membrane Proteins Proteins which are found in membranes including cellular and intracellular membranes. They consist of two types, peripheral and integral proteins. They include most membrane-associated enzymes, antigenic proteins, transport proteins, and drug, hormone, and lectin receptors. Cell Membrane Protein,Cell Membrane Proteins,Cell Surface Protein,Cell Surface Proteins,Integral Membrane Proteins,Membrane-Associated Protein,Surface Protein,Surface Proteins,Integral Membrane Protein,Membrane Protein,Membrane-Associated Proteins,Membrane Associated Protein,Membrane Associated Proteins,Membrane Protein, Cell,Membrane Protein, Integral,Membrane Proteins, Integral,Protein, Cell Membrane,Protein, Cell Surface,Protein, Integral Membrane,Protein, Membrane,Protein, Membrane-Associated,Protein, Surface,Proteins, Cell Membrane,Proteins, Cell Surface,Proteins, Integral Membrane,Proteins, Membrane,Proteins, Membrane-Associated,Proteins, Surface,Surface Protein, Cell
D011898 Ranidae The family of true frogs of the order Anura. The family occurs worldwide except in Antarctica. Frogs, True,Rana,Frog, True,True Frog,True Frogs
D012160 Retina The ten-layered nervous tissue membrane of the eye. It is continuous with the OPTIC NERVE and receives images of external objects and transmits visual impulses to the brain. Its outer surface is in contact with the CHOROID and the inner surface with the VITREOUS BODY. The outer-most layer is pigmented, whereas the inner nine layers are transparent. Ora Serrata
D002451 Cell Compartmentation A partitioning within cells due to the selectively permeable membranes which enclose each of the separate parts, e.g., mitochondria, lysosomes, etc. Cell Compartmentations,Compartmentation, Cell,Compartmentations, Cell
D002474 Cell-Free System A fractionated cell extract that maintains a biological function. A subcellular fraction isolated by ultracentrifugation or other separation techniques must first be isolated so that a process can be studied free from all of the complex side reactions that occur in a cell. The cell-free system is therefore widely used in cell biology. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p166) Cellfree System,Cell Free System,Cell-Free Systems,Cellfree Systems,System, Cell-Free,System, Cellfree,Systems, Cell-Free,Systems, Cellfree
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D006056 Golgi Apparatus A stack of flattened vesicles that functions in posttranslational processing and sorting of proteins, receiving them from the rough ENDOPLASMIC RETICULUM and directing them to secretory vesicles, LYSOSOMES, or the CELL MEMBRANE. The movement of proteins takes place by transfer vesicles that bud off from the rough endoplasmic reticulum or Golgi apparatus and fuse with the Golgi, lysosomes or cell membrane. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990) Golgi Complex,Apparatus, Golgi,Complex, Golgi
D000255 Adenosine Triphosphate An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. ATP,Adenosine Triphosphate, Calcium Salt,Adenosine Triphosphate, Chromium Salt,Adenosine Triphosphate, Magnesium Salt,Adenosine Triphosphate, Manganese Salt,Adenylpyrophosphate,CaATP,CrATP,Manganese Adenosine Triphosphate,MgATP,MnATP,ATP-MgCl2,Adenosine Triphosphate, Chromium Ammonium Salt,Adenosine Triphosphate, Magnesium Chloride,Atriphos,Chromium Adenosine Triphosphate,Cr(H2O)4 ATP,Magnesium Adenosine Triphosphate,Striadyne,ATP MgCl2
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

D Deretic, and B Puleo-Scheppke, and C Trippe
January 1998, Eye (London, England),
D Deretic, and B Puleo-Scheppke, and C Trippe
January 2000, Methods in enzymology,
D Deretic, and B Puleo-Scheppke, and C Trippe
June 1991, The Journal of cell biology,
D Deretic, and B Puleo-Scheppke, and C Trippe
January 1995, Cold Spring Harbor symposia on quantitative biology,
D Deretic, and B Puleo-Scheppke, and C Trippe
May 2001, Journal of neurochemistry,
D Deretic, and B Puleo-Scheppke, and C Trippe
February 2007, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
D Deretic, and B Puleo-Scheppke, and C Trippe
October 2000, Electrophoresis,
D Deretic, and B Puleo-Scheppke, and C Trippe
January 2022, Frontiers in plant science,
Copied contents to your clipboard!