Inhibition of TNF-alpha production contributes to the attenuation of LPS-induced hypophagia by pentoxifylline. 2000

M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
Institute of Animal Sciences, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland. mhporter@yahoo.com

Cytokines such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1beta (IL-1beta) are assumed to mediate anorexia during bacterial infections. To improve our understanding of the role that these two cytokines serve in mediating infection during anorexia, we investigated the ability of pentoxifylline (PTX), a potent inhibitor of TNF-alpha production, to block the anorectic effects of the bacterial products lipopolysaccharide (LPS) and muramyl dipeptide (MDP) in rats. Intraperitoneally injected PTX (100 mg/kg body wt) completely eliminated the anorectic effect of intraperitoneally injected LPS (100 microg/kg body wt) and attenuated the anorectic effect of a higher dose of intraperitoneally injected LPS (250 microg/kg body wt). Concurrently, PTX pretreatment suppressed low-dose LPS-induced TNF-alpha production by more than 95% and IL-1beta production 39%, as measured by ELISA. Similarly, high-dose LPS-induced TNF-alpha production was reduced by approximately 90%. PTX administration also attenuated the tolerance that is normally observed with a second injection of LPS. In addition, PTX pretreatment attenuated the hypophagic effect of intraperitoneally injected MDP (2 mg/kg body wt) but had no effect on the anorectic response to intraperitoneally injected recombinant human TNF-alpha (150 ug/kg body wt). The results suggest that suppression of TNF-alpha production is sufficient to attenuate LPS- and MDP-induced anorexia. This is consistent with the hypothesis that TNF-alpha plays a major role in the anorexia associated with bacterial infection.

UI MeSH Term Description Entries
D006963 Hyperphagia Ingestion of a greater than optimal quantity of food. Overeating,Polyphagia,Polyphagias
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D008297 Male Males
D010431 Pentoxifylline A METHYLXANTHINE derivative that inhibits phosphodiesterase and affects blood rheology. It improves blood flow by increasing erythrocyte and leukocyte flexibility. It also inhibits platelet aggregation. Pentoxifylline modulates immunologic activity by stimulating cytokine production. Agapurin,BL-191,Oxpentifylline,Pentoxil,Torental,Trental,BL 191,BL191
D010566 Virulence Factors, Bordetella A set of BACTERIAL ADHESINS and TOXINS, BIOLOGICAL produced by BORDETELLA organisms that determine the pathogenesis of BORDETELLA INFECTIONS, such as WHOOPING COUGH. They include filamentous hemagglutinin; FIMBRIAE PROTEINS; pertactin; PERTUSSIS TOXIN; ADENYLATE CYCLASE TOXIN; dermonecrotic toxin; tracheal cytotoxin; Bordetella LIPOPOLYSACCHARIDES; and tracheal colonization factor. Bordetella Virulence Factors,Agglutinogen 2, Bordetella Pertussis,Bordetella Virulence Determinant,LFP-Hemagglutinin,LP-HA,Leukocytosis-Promoting Factor Hemagglutinin,Lymphocytosis-Promoting Factor-Hemagglutinin,Pertussis Agglutinins,Agglutinins, Pertussis,Determinant, Bordetella Virulence,Factor Hemagglutinin, Leukocytosis-Promoting,Factor-Hemagglutinin, Lymphocytosis-Promoting,Factors, Bordetella Virulence,Hemagglutinin, Leukocytosis-Promoting Factor,LFP Hemagglutinin,LP HA,Leukocytosis Promoting Factor Hemagglutinin,Lymphocytosis Promoting Factor Hemagglutinin,Virulence Determinant, Bordetella
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000119 Acetylmuramyl-Alanyl-Isoglutamine Peptidoglycan immunoadjuvant originally isolated from bacterial cell wall fragments; also acts as pyrogen and may cause arthritis; stimulates both humoral and cellular immunity. Mur-NAc-L-Ala-D-isoGln,Muramyl Dipeptide,Acetylmuramyl Alanyl Isoglutamine,N-Acetyl-Muramyl-L-Alanyl-D-Glutamic-alpha-Amide,N-Acetylmuramyl-L-Alanyl-D-Isoglutamine,Alanyl Isoglutamine, Acetylmuramyl,Dipeptide, Muramyl,Isoglutamine, Acetylmuramyl Alanyl,Mur NAc L Ala D isoGln,N Acetyl Muramyl L Alanyl D Glutamic alpha Amide,N Acetylmuramyl L Alanyl D Isoglutamine

Related Publications

M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
March 1998, The American journal of physiology,
M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
July 2003, The Journal of endocrinology,
M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
March 1995, International journal of immunopharmacology,
M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
April 2004, American journal of physiology. Lung cellular and molecular physiology,
M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
January 1997, Life sciences,
M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
September 1997, European journal of haematology,
M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
August 1998, General pharmacology,
M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
June 2004, American journal of physiology. Cell physiology,
M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
October 1994, International journal of immunopharmacology,
M H Porter, and B J Hrupka, and G Altreuther, and M Arnold, and W Langhans
February 1999, American journal of respiratory and critical care medicine,
Copied contents to your clipboard!