Effect of acetaminophen on heme metabolism in rat liver. 2000

G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET-Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

OBJECTIVE Acetaminophen (APAP) or paracetamol is a hepatotoxic drug through mechanisms involving oxidative stress. To know whether mammalian cells possess inducible pathways for antioxidant defense, we have to study the relationship between heme metabolism and oxidative stress. METHODS fasted female Wistar rats received a single injection of APAP (3.3 mmol kg(-1) body weight) and then were killed at different times. Heme oxygenase-1 (HO), delta-aminolevulinic acid (ALA) synthase, ALA dehydratase, and porphobilinogenase activities, lipid peroxidation, GSH, catalase and glutathione peroxidase, were measured in liver homogenates. The antioxidant properties of bilirubin and S-adenosyl-L-methionine were also evaluated. RESULTS APAP increased lipid peroxidation (115% +/- 6; S.E.M., n=12 over control values) 1 h after treatment. GSH reached a minimum at 3 h (38% +/- 5) increasing thereafter. At the same time antioxidant enzymes reached minimum values (catalase, 5. 6 +/- 0.4 pmol mg(-1) protein, glutathione peroxidase, 0.101 +/- 0.006 U mg(-1) protein). HO induction was observed 6 h after treatment reaching a maximum value of 2.56 +/- 0.12 U mg(-1) protein 15 after injection. ALA synthase (ALA-S) induction occurred after enhancement of HO, reaching a maximum at 18 h (three-fold the control). ALA dehydratase activity was first inhibited (31 +/- 3%) showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of bilirubin (5 micromol kg(-1) body weight) or S-adenosyl L-methionine (46 micromol kg(-1) body weight) 2 h before APAP treatment entirely prevented the increase in malondialdehyde (MDA) content, the decrease in GSH levels as well as HO and ALA-S induction. CONCLUSIONS This study shows that oxidative stress produced by APAP leads to increase in ALA-S and HO activities, indicating that toxic doses of APAP affect both heme biosynthesis and degradation.

UI MeSH Term Description Entries
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D005260 Female Females
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D000082 Acetaminophen Analgesic antipyretic derivative of acetanilide. It has weak anti-inflammatory properties and is used as a common analgesic, but may cause liver, blood cell, and kidney damage. Acetamidophenol,Hydroxyacetanilide,Paracetamol,APAP,Acamol,Acephen,Acetaco,Acetominophen,Algotropyl,Anacin-3,Datril,N-(4-Hydroxyphenyl)acetanilide,N-Acetyl-p-aminophenol,Panadol,Tylenol,p-Acetamidophenol,p-Hydroxyacetanilide,Anacin 3,Anacin3
D000623 Porphobilinogen Synthase An enzyme that catalyzes the formation of porphobilinogen from two molecules of 5-aminolevulinic acid. EC 4.2.1.24. Aminolevulinate Hydro-Lyase,Aminolevulinic Acid Dehydratase,ALA-Dehydrase,delta-Aminolevulinate Dehydratase,delta-Aminolevulinic Acid Dehydratase,ALA Dehydrase,Acid Dehydratase, Aminolevulinic,Acid Dehydratase, delta-Aminolevulinic,Aminolevulinate Hydro Lyase,Dehydratase, Aminolevulinic Acid,Dehydratase, delta-Aminolevulinate,Dehydratase, delta-Aminolevulinic Acid,Hydro-Lyase, Aminolevulinate,Synthase, Porphobilinogen,delta Aminolevulinate Dehydratase,delta Aminolevulinic Acid Dehydratase
D000624 5-Aminolevulinate Synthetase An enzyme of the transferase class that catalyzes condensation of the succinyl group from succinyl coenzyme A with glycine to form delta-aminolevulinate. It is a pyridoxyal phosphate protein and the reaction occurs in mitochondria as the first step of the heme biosynthetic pathway. The enzyme is a key regulatory enzyme in heme biosynthesis. In liver feedback is inhibited by heme. EC 2.3.1.37. Aminolevulinic Acid Synthetase,delta-Aminolevulinate Synthase,5-Aminolevulinate Synthase,delta-Aminolevulinic Acid Synthetase,5 Aminolevulinate Synthase,5 Aminolevulinate Synthetase,Acid Synthetase, Aminolevulinic,Acid Synthetase, delta-Aminolevulinic,Synthase, 5-Aminolevulinate,Synthase, delta-Aminolevulinate,Synthetase, 5-Aminolevulinate,Synthetase, Aminolevulinic Acid,Synthetase, delta-Aminolevulinic Acid,delta Aminolevulinate Synthase,delta Aminolevulinic Acid Synthetase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001663 Bilirubin A bile pigment that is a degradation product of HEME. Bilirubin IX alpha,Bilirubin, (15E)-Isomer,Bilirubin, (4E)-Isomer,Bilirubin, (4E,15E)-Isomer,Bilirubin, Calcium Salt,Bilirubin, Disodium Salt,Bilirubin, Monosodium Salt,Calcium Bilirubinate,Hematoidin,delta-Bilirubin,Bilirubinate, Calcium,Calcium Salt Bilirubin,Disodium Salt Bilirubin,Monosodium Salt Bilirubin,Salt Bilirubin, Calcium,delta Bilirubin
D012436 S-Adenosylmethionine Physiologic methyl radical donor involved in enzymatic transmethylation reactions and present in all living organisms. It possesses anti-inflammatory activity and has been used in treatment of chronic liver disease. (From Merck, 11th ed) AdoMet,Ademetionine,FO-1561,Gumbaral,S Amet,S-Adenosyl-L-Methionine,S-Adenosylmethionine Sulfate Tosylate,SAM-e,Samyr,FO 1561,FO1561,S Adenosyl L Methionine,S Adenosylmethionine,S Adenosylmethionine Sulfate Tosylate

Related Publications

G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
January 1985, Experimental gerontology,
G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
August 1987, Research communications in chemical pathology and pharmacology,
G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
August 1991, Biochemical pharmacology,
G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
September 1983, Biochemical pharmacology,
G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
June 1969, Biochemical pharmacology,
G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
March 1984, Israel journal of medical sciences,
G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
October 1985, Biochemical pharmacology,
G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
November 2010, Peptides,
G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
August 1986, Biokhimiia (Moscow, Russia),
G O Noriega, and J O Ossola, and M L Tomaro, and A M Batlle
September 1983, Gastroenterology,
Copied contents to your clipboard!