Effect of age on rat liver heme and drug metabolism. 1985

N G Abraham, and R D Levere, and M L Freedman

Old (24-months) rats have lower activities of hepatic delta-aminolevulinic synthase and the microsomal cytochrome P-450 monooxygenase activities--aminopyrine N-demethylase and aniline hydroxylase--as compared to young (2-months) animals. In contrast, the activity of the heme degradative enzyme, heme oxygenase, is higher in the old rats. Cytochrome P-450 and microsomal heme contents were maintained in the old. When inducibility and inhibition of these enzymes were studied, the old rats responded to the same degree as the young. These results indicate that the ability of the heme synthetic and degradative enzymes to respond to decreasing cellular heme levels is not significantly altered with age. The observations that there is a lower baseline activity of ALA-synthase and good maintenance of microsomal heme and cytochrome P-450 content, in spite of elevated heme oxygenase activity in the old, suggest that, at least in the senescent rat, hepatic heme utilization and degradation are only loosely coupled to heme production. It appears, therefore, that alternate sources of heme for cytochrome P-450 are available in the old animals. Furthermore, it is suggested that the old rat has a baseline change in ALA-synthase, heme oxygenase, and cytochrome P-450 that may be overcome under the appropriate conditions.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008862 Microsomes, Liver Closed vesicles of fragmented endoplasmic reticulum created when liver cells or tissue are disrupted by homogenization. They may be smooth or rough. Liver Microsomes,Liver Microsome,Microsome, Liver
D010105 Oxygenases Oxidases that specifically introduce DIOXYGEN-derived oxygen atoms into a variety of organic molecules. Oxygenase
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006418 Heme The color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. Ferroprotoporphyrin,Protoheme,Haem,Heme b,Protoheme IX
D006419 Heme Oxygenase (Decyclizing) A mixed function oxidase enzyme which during hemoglobin catabolism catalyzes the degradation of heme to ferrous iron, carbon monoxide and biliverdin in the presence of molecular oxygen and reduced NADPH. The enzyme is induced by metals, particularly cobalt. Haem Oxygenase,Heme Oxygenase,Oxygenase, Haem,Oxygenase, Heme
D006427 Hemin Chloro(7,12-diethenyl-3,8,13,17-tetramethyl-21H,23H-porphine-2,18-dipropanoato(4-)-N(21),N(22),N(23),N(24)) ferrate(2-) dihydrogen. Ferriprotoporphyrin,Hematin,Alkaline Hematin D-575,Chlorohemin,Ferrihaem,Ferriheme Chloride,Ferriprotoporphyrin IX,Ferriprotoporphyrin IX Chloride,Panhematin,Protohemin,Protohemin IX,Alkaline Hematin D 575,Chloride, Ferriheme,Chloride, Ferriprotoporphyrin IX,Hematin D-575, Alkaline
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000502 Allylisopropylacetamide An allylic compound that acts as a suicide inactivator of CYTOCHROME P450 by covalently binding to its heme moiety or surrounding protein. 2-Isopropyl-4-Pentenamide,2 Isopropyl 4 Pentenamide

Related Publications

N G Abraham, and R D Levere, and M L Freedman
September 2000, The international journal of biochemistry & cell biology,
N G Abraham, and R D Levere, and M L Freedman
January 1986, Experimental gerontology,
N G Abraham, and R D Levere, and M L Freedman
May 1987, Deutsche medizinische Wochenschrift (1946),
N G Abraham, and R D Levere, and M L Freedman
June 1969, Biochemical pharmacology,
N G Abraham, and R D Levere, and M L Freedman
August 1987, Research communications in chemical pathology and pharmacology,
N G Abraham, and R D Levere, and M L Freedman
November 1984, Age and ageing,
N G Abraham, and R D Levere, and M L Freedman
September 1983, Gastroenterology,
N G Abraham, and R D Levere, and M L Freedman
March 1984, Israel journal of medical sciences,
N G Abraham, and R D Levere, and M L Freedman
July 1993, Medicine and science in sports and exercise,
Copied contents to your clipboard!