Apoptosis of thyrocytes and effector cells during induction and resolution of granulomatous experimental autoimmune thyroiditis. 2000

H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
Departments of Internal Medicine, Molecular Microbiology & Immunology and Pathology, University of Missouri School of Medicine, Columbia, MO 65212, USA.

Experimental autoimmune thyroiditis (EAT) with granulomatous histopathology (G-EAT) can be induced by cells from mouse thyroglobulin (MTg)-immunized donors activated in vitro with MTg and IL-12. G-EAT lesions reach maximum severity 18-21 days after cell transfer and, if some thyroid follicles remain, lesions almost completely resolve by day 35. CD8(+) cells are required for G-EAT resolution. To begin to determine the mechanisms involved in G-EAT resolution, apoptosis in thyroids was analyzed by TUNEL staining. Apoptotic thyrocytes and inflammatory cells were present in the thyroids of both CD8(+) and CD8-depleted recipient mice at day 19-21. By day 35, apoptotic cells were rare in thyroids of mice whose lesions had resolved; the few apoptotic inflammatory cells were generally in close proximity to thyroid follicles. Thyroids of CD8-depleted mice had ongoing inflammation at day 35 and most apoptotic cells were thyroid follicular cells. The expression of Fas and Fas ligand (FasL) mRNA in thyroids was also determined by RT-PCR in both CD8(+) and CD8-depleted recipient mice. Fas was expressed in normal thyroids and its expression was relatively constant throughout the course of disease. FasL mRNA was not expressed in normal thyroids. FasL mRNA expression generally correlated with G-EAT severity, being maximal at day 21 and diminishing as lesions resolved. However, FasL mRNA expression in thyroids of CD8-depleted mice in which resolution was delayed was decreased compared to thyroids of CD8(+) mice with comparable disease severity, suggesting that FasL expressed by CD8(+) cells may play a role in G-EAT resolution.

UI MeSH Term Description Entries
D007249 Inflammation A pathological process characterized by injury or destruction of tissues caused by a variety of cytologic and chemical reactions. It is usually manifested by typical signs of pain, heat, redness, swelling, and loss of function. Innate Inflammatory Response,Inflammations,Inflammatory Response, Innate,Innate Inflammatory Responses
D008562 Membrane Glycoproteins Glycoproteins found on the membrane or surface of cells. Cell Surface Glycoproteins,Surface Glycoproteins,Cell Surface Glycoprotein,Membrane Glycoprotein,Surface Glycoprotein,Glycoprotein, Cell Surface,Glycoprotein, Membrane,Glycoprotein, Surface,Glycoproteins, Cell Surface,Glycoproteins, Membrane,Glycoproteins, Surface,Surface Glycoprotein, Cell,Surface Glycoproteins, Cell
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D005260 Female Females
D006099 Granuloma A relatively small nodular inflammatory lesion containing grouped mononuclear phagocytes, caused by infectious and noninfectious agents. Granulomas
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000906 Antibodies Immunoglobulin molecules having a specific amino acid sequence by virtue of which they interact only with the ANTIGEN (or a very similar shape) that induced their synthesis in cells of the lymphoid series (especially PLASMA CELLS).
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013961 Thyroid Gland A highly vascularized endocrine gland consisting of two lobes joined by a thin band of tissue with one lobe on each side of the TRACHEA. It secretes THYROID HORMONES from the follicular cells and CALCITONIN from the parafollicular cells thereby regulating METABOLISM and CALCIUM level in blood, respectively. Thyroid,Gland, Thyroid,Glands, Thyroid,Thyroid Glands,Thyroids
D013967 Thyroiditis, Autoimmune Inflammatory disease of the THYROID GLAND due to autoimmune responses leading to lymphocytic infiltration of the gland. It is characterized by the presence of circulating thyroid antigen-specific T-CELLS and thyroid AUTOANTIBODIES. The clinical signs can range from HYPOTHYROIDISM to THYROTOXICOSIS depending on the type of autoimmune thyroiditis. Autoimmune Thyroiditis,Thyroiditis, Lymphocytic,Thyroiditis, Lymphomatous,Autoimmune Thyroiditides,Lymphocytic Thyroiditides,Lymphocytic Thyroiditis,Lymphomatous Thyroiditides,Lymphomatous Thyroiditis,Thyroiditides, Autoimmune,Thyroiditides, Lymphocytic,Thyroiditides, Lymphomatous

Related Publications

H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
December 2001, Journal of immunology (Baltimore, Md. : 1950),
H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
June 2006, Clinical and experimental immunology,
H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
February 1994, Cellular immunology,
H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
June 2008, The American journal of pathology,
H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
September 1992, Journal of immunology (Baltimore, Md. : 1950),
H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
February 1999, Journal of autoimmunity,
H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
December 2004, Journal of immunology (Baltimore, Md. : 1950),
H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
December 2003, Journal of immunology (Baltimore, Md. : 1950),
H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
December 2008, The Journal of pathology,
H Tang, and K Chen, and Y Wei, and G C Sharp, and L McKee, and H Braley-Mullen
April 1991, The Journal of experimental medicine,
Copied contents to your clipboard!