Cholesterol and hepatic lipoprotein assembly and secretion. 2000

S Kang, and R A Davis
Mammalian Cell and Molecular Biology Lab, Department of Biology, The Molecular Biology Institute, San Diego State University, San Diego, California 92182-0057, USA.

The assembly and secretion of apo B100 containing lipoproteins (i.e., VLDL) by the liver and cholesterol metabolism are interrelated on several different levels and for several different physiologic reasons. Firstly, hepatic VLDL is the major precursor for LDL, which in the human is the major vehicle responsible for transporting cholesterol to peripheral tissues. Secondly, cholesterol is supplied to many tissues by a specific uptake of LDL via LDL receptor, which is expressed in a regulated manner by most mammalian tissues. Thirdly, the rate of hepatic cholesterol biosynthesis and metabolism to bile acids correlates with production of VLDL. This apparent coordinate expression of cholesterol biosynthetic/catabolic enzymes and hepatic VLDL assembly/secretion are mediated at least in part through the sterol response element binding protein (SREBP) transcription factor family. Their gene targets include a plethora of enzymes that regulate glycolysis, energy production, lipogenesis and cholesterol catabolism. Studies of hepatoma cells overexpressing CYP7A1, the rate-limiting enzyme controlling bile acid synthesis, show that as a result of increased mature SREBP1, there is a coordinate induction of lipogenesis and the assembly and secretion of VLDL. These and additional studies show that the bile acid synthetic pathway and the VLDL assembly/secretion pathway are coordinately linked through SREBP-dependent transcription. Based on studies showing that within the liver acinus, the expression of CYP7A1 is mainly in the pericentral region while HMG-CoA reductase is mainly periportal, we propose that a 'metabolic zonal segregation' plays an important role in coordinate regulation of cholesterol and VLDL metabolism. This putative 'metabolic zonal segregation' may provide segregation of metabolic functions which may be mutually antagonistic. For example, there may be physiologic states in which the bile acid synthetic pathway may compete with the VLDL assembly/secretion pathway for a limited amount of cholesterol. Metabolic antagonism (e.g., competition for cholesterol) may be avoided via inducing SREBP-mediated transcription. Adaptation of catabolic hepatocytes to accommodate the expression of VLDL assembly/secretion may occur in response to activation of SREBP-mediated transcription. Support for these is discussed.

UI MeSH Term Description Entries
D008066 Lipolysis The metabolic process of breaking down LIPIDS to release FREE FATTY ACIDS, the major oxidative fuel for the body. Lipolysis may involve dietary lipids in the DIGESTIVE TRACT, circulating lipids in the BLOOD, and stored lipids in the ADIPOSE TISSUE or the LIVER. A number of enzymes are involved in such lipid hydrolysis, such as LIPASE and LIPOPROTEIN LIPASE from various tissues. Lipolyses
D008074 Lipoproteins Lipid-protein complexes involved in the transportation and metabolism of lipids in the body. They are spherical particles consisting of a hydrophobic core of TRIGLYCERIDES and CHOLESTEROL ESTERS surrounded by a layer of hydrophilic free CHOLESTEROL; PHOSPHOLIPIDS; and APOLIPOPROTEINS. Lipoproteins are classified by their varying buoyant density and sizes. Circulating Lipoproteins,Lipoprotein,Lipoproteins, Circulating
D008079 Lipoproteins, VLDL A class of lipoproteins of very light (0.93-1.006 g/ml) large size (30-80 nm) particles with a core composed mainly of TRIGLYCERIDES and a surface monolayer of PHOSPHOLIPIDS and CHOLESTEROL into which are imbedded the apolipoproteins B, E, and C. VLDL facilitates the transport of endogenously made triglycerides to extrahepatic tissues. As triglycerides and Apo C are removed, VLDL is converted to INTERMEDIATE-DENSITY LIPOPROTEINS, then to LOW-DENSITY LIPOPROTEINS from which cholesterol is delivered to the extrahepatic tissues. Pre-beta-Lipoprotein,Prebeta-Lipoprotein,Prebeta-Lipoproteins,Very Low Density Lipoprotein,Very-Low-Density Lipoprotein,Very-Low-Density Lipoproteins,Lipoprotein VLDL II,Lipoproteins, VLDL I,Lipoproteins, VLDL III,Lipoproteins, VLDL1,Lipoproteins, VLDL2,Lipoproteins, VLDL3,Pre-beta-Lipoproteins,Lipoprotein, Very-Low-Density,Lipoproteins, Very-Low-Density,Pre beta Lipoprotein,Pre beta Lipoproteins,Prebeta Lipoprotein,Prebeta Lipoproteins,VLDL Lipoproteins,VLDL1 Lipoproteins,VLDL2 Lipoproteins,VLDL3 Lipoproteins,Very Low Density Lipoproteins
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D002784 Cholesterol The principal sterol of all higher animals, distributed in body tissues, especially the brain and spinal cord, and in animal fats and oils. Epicholesterol
D004268 DNA-Binding Proteins Proteins which bind to DNA. The family includes proteins which bind to both double- and single-stranded DNA and also includes specific DNA binding proteins in serum which can be used as markers for malignant diseases. DNA Helix Destabilizing Proteins,DNA-Binding Protein,Single-Stranded DNA Binding Proteins,DNA Binding Protein,DNA Single-Stranded Binding Protein,SS DNA BP,Single-Stranded DNA-Binding Protein,Binding Protein, DNA,DNA Binding Proteins,DNA Single Stranded Binding Protein,DNA-Binding Protein, Single-Stranded,Protein, DNA-Binding,Single Stranded DNA Binding Protein,Single Stranded DNA Binding Proteins
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001647 Bile Acids and Salts Steroid acids and salts. The primary bile acids are derived from cholesterol in the liver and usually conjugated with glycine or taurine. The secondary bile acids are further modified by bacteria in the intestine. They play an important role in the digestion and absorption of fat. They have also been used pharmacologically, especially in the treatment of gallstones. Bile Acid,Bile Salt,Bile Salts,Bile Acids,Acid, Bile,Acids, Bile,Salt, Bile,Salts, Bile
D014157 Transcription Factors Endogenous substances, usually proteins, which are effective in the initiation, stimulation, or termination of the genetic transcription process. Transcription Factor,Factor, Transcription,Factors, Transcription

Related Publications

S Kang, and R A Davis
May 1990, The Biochemical journal,
S Kang, and R A Davis
February 1987, Journal of lipid research,
S Kang, and R A Davis
January 1990, Annual review of nutrition,
S Kang, and R A Davis
February 1992, Journal of lipid research,
S Kang, and R A Davis
April 2001, Current opinion in lipidology,
S Kang, and R A Davis
December 1987, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
S Kang, and R A Davis
October 1989, Journal of lipid research,
S Kang, and R A Davis
June 1988, Journal of lipid research,
Copied contents to your clipboard!