Integrative module of the high-pathogenicity island of Yersinia. 2001

A Rakin, and C Noelting, and P Schropp, and J Heesemann
Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie, Petterkofer Str. 9a, 80336 München, Germany. rakin@m3401.mpk.med.uni-muenchen.de

The high-pathogenicity island of Yersinia pestis (Yps HPI) encodes virulence-associated genes involved in siderophore yersiniabactin-mediated iron uptake. The Yps HPI contains a P4-type integrase (Int-HPI), associated with the asn-tRNA locus, and is flanked by 17 bp direct repeats. We constructed a minimal integrative module of the pathogenicity island carrying the reconstituted 266 bp attP (POP') attachment site derived from putative attR and attL junctions of the Yps HPI and the functional int-HPI gene from Y. pestis KUMA. The attP-int-HPI module recombined efficiently, site specifically and RecA independently with the bacterial attB site present either in the chromosome (asn-tDNA) or on a plasmid, with no preference for a certain asn-tRNA gene. The excision of the integrated suicide plasmid carrying the integrative module, on the other hand, was a rare event and could be demonstrated only by polymerase chain reaction. Analysis of the 5' terminus of the transcript for int-HPI revealed that the integration of attP-int-HPI was coupled with the replacement of the endogenous int-HPI promoter, localized in the P' part of the attP site, by the adjacent asn-tRNA promoter. These results suggest that two alternative promoters control integration and excision of the HPI by its integrase.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D011995 Recombination, Genetic Production of new arrangements of DNA by various mechanisms such as assortment and segregation, CROSSING OVER; GENE CONVERSION; GENETIC TRANSFORMATION; GENETIC CONJUGATION; GENETIC TRANSDUCTION; or mixed infection of viruses. Genetic Recombination,Recombination,Genetic Recombinations,Recombinations,Recombinations, Genetic
D001287 Attachment Sites, Microbiological Specific loci on both the bacterial DNA (attB) and the phage DNA (attP) which delineate the sites where recombination takes place between them, as the phage DNA becomes integrated (inserted) into the BACTERIAL DNA during LYSOGENY. Attachment Sites (Microbiology),Bacterial Attachment Sites,Phage Attachment Sites,Att Attachment Sites,AttB Attachment Sites,AttP Attachment Sites,Attachment Site (Microbiology),Attachment Site, Bacterial,Attachment Sites, Bacterial,Bacterial Attachment Site,Microbiologic Attachment Site,Microbiologic Attachment Sites,Att Attachment Site,AttB Attachment Site,AttP Attachment Site,Attachment Site, Att,Attachment Site, AttB,Attachment Site, AttP,Attachment Site, Microbiologic,Attachment Site, Microbiological,Attachment Site, Phage,Attachment Sites, Att,Attachment Sites, AttB,Attachment Sites, AttP,Attachment Sites, Microbiologic,Attachment Sites, Phage,Microbiological Attachment Site,Microbiological Attachment Sites,Phage Attachment Site
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D014774 Virulence The degree of pathogenicity within a group or species of microorganisms or viruses as indicated by case fatality rates and/or the ability of the organism to invade the tissues of the host. The pathogenic capacity of an organism is determined by its VIRULENCE FACTORS. Pathogenicity
D015010 Yersinia pestis The etiologic agent of PLAGUE in man, rats, ground squirrels, and other rodents. Bacillus pestis,Bacterium pestis,Pasteurella pestis,Pestisella pestis,Yersinia pseudotuberculosis subsp. pestis
D016133 Polymerase Chain Reaction In vitro method for producing large amounts of specific DNA or RNA fragments of defined length and sequence from small amounts of short oligonucleotide flanking sequences (primers). The essential steps include thermal denaturation of the double-stranded target molecules, annealing of the primers to their complementary sequences, and extension of the annealed primers by enzymatic synthesis with DNA polymerase. The reaction is efficient, specific, and extremely sensitive. Uses for the reaction include disease diagnosis, detection of difficult-to-isolate pathogens, mutation analysis, genetic testing, DNA sequencing, and analyzing evolutionary relationships. Anchored PCR,Inverse PCR,Nested PCR,PCR,Anchored Polymerase Chain Reaction,Inverse Polymerase Chain Reaction,Nested Polymerase Chain Reaction,PCR, Anchored,PCR, Inverse,PCR, Nested,Polymerase Chain Reactions,Reaction, Polymerase Chain,Reactions, Polymerase Chain

Related Publications

A Rakin, and C Noelting, and P Schropp, and J Heesemann
September 1999, International microbiology : the official journal of the Spanish Society for Microbiology,
A Rakin, and C Noelting, and P Schropp, and J Heesemann
June 2001, Microbes and infection,
A Rakin, and C Noelting, and P Schropp, and J Heesemann
May 2005, Journal of bacteriology,
A Rakin, and C Noelting, and P Schropp, and J Heesemann
September 2004, International journal of medical microbiology : IJMM,
A Rakin, and C Noelting, and P Schropp, and J Heesemann
February 2004, Molecular microbiology,
A Rakin, and C Noelting, and P Schropp, and J Heesemann
October 1999, FEMS microbiology letters,
A Rakin, and C Noelting, and P Schropp, and J Heesemann
May 2015, The Analyst,
A Rakin, and C Noelting, and P Schropp, and J Heesemann
August 2004, Infection and immunity,
A Rakin, and C Noelting, and P Schropp, and J Heesemann
June 2007, Acta microbiologica et immunologica Hungarica,
A Rakin, and C Noelting, and P Schropp, and J Heesemann
February 2000, FEMS microbiology letters,
Copied contents to your clipboard!