Dominant-negative polo-like kinase 1 induces mitotic catastrophe independent of cdc25C function. 2000

J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
Department of Functional Genetics, Glaxo Wellcome Inc., Research Triangle Park, North Carolina 27709, USA. jpc30240@glaxowellcome.com

Polo-like kinase 1 (PLK1), which has been shown to have a critical role in mitosis, is one possible target for cancer therapeutic intervention. PLK1, at least in Xenopus, starts the mitotic cascade by phosphorylating and activating cdc25C phosphatase. Also, loss of PLK1 function has been shown to induce mitotic catastrophe in a HeLa cervical carcinoma cell line but not in normal Hs68 fibroblasts. We wanted to understand whether the selective mitotic catastrophe in HeLa cells could be extended to other tumor types, and, if so, whether it could be attributable to a tumor-specific loss of dependence on PLK1 for cdc25C activation. When PLK1 function was blocked through adenovirus delivery of a dominant-negative gene, we observed tumor-selective apoptosis in most tumor cell lines. In some lines, dominant-negative PLK1 induced a mitotic catastrophe similar to that published in HeLa cells (K. E. Mundt et al., Biochem. Biophys Res. Commun., 239: 377-385, 1997). Normal human mammary epithelial cells, although arrested in mitosis, appeared to escape the loss of centrosome maturation and mitotic catastrophe seen in tumor lines. Mitotic phosphorylation of cdc25C and activation of cdk1 was blocked by dominant-negative PLK1 in human mammary epithelial cells as well as in the tumor lines regardless of whether they underwent mitotic catastrophe. These data strongly argue that the mitotic catastrophe is not attributable to a lack of dependence for PLK1 in activating cdc25C.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D008938 Mitosis A type of CELL NUCLEUS division by means of which the two daughter nuclei normally receive identical complements of the number of CHROMOSOMES of the somatic cells of the species. M Phase, Mitotic,Mitotic M Phase,M Phases, Mitotic,Mitoses,Mitotic M Phases,Phase, Mitotic M,Phases, Mitotic M
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011494 Protein Kinases A family of enzymes that catalyze the conversion of ATP and a protein to ADP and a phosphoprotein. Protein Kinase,Kinase, Protein,Kinases, Protein
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D001940 Breast In humans, one of the paired regions in the anterior portion of the THORAX. The breasts consist of the MAMMARY GLANDS, the SKIN, the MUSCLES, the ADIPOSE TISSUE, and the CONNECTIVE TISSUES. Breasts
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D005260 Female Females

Related Publications

J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
September 2013, European journal of cancer (Oxford, England : 1990),
J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
April 2015, Oncotarget,
J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
January 2010, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer,
J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
May 2017, Chemical biology & drug design,
J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
April 2017, Journal of cellular and molecular medicine,
J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
August 2006, Proceedings of the National Academy of Sciences of the United States of America,
J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
July 2004, Molecular cancer research : MCR,
J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
February 2004, Cell cycle (Georgetown, Tex.),
J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
November 2018, Cytoskeleton (Hoboken, N.J.),
J P Cogswell, and C E Brown, and J E Bisi, and S D Neill
July 2001, Journal of cell science,
Copied contents to your clipboard!